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Abstract

We consider turbo equalization of ISI channels for the practically relevant case when neither channel state information nor SNR
knowledge is perfect at the receive side. In particular, we investigate the influence of imperfect (uncertain) training information
on the performance of several known SNR estimation algorithms. Numerical results indicate that uncertain training data causes
an additional bias that may lead to a performance degradation. We propose a modified, adaptive SNR estimation algorithm with
reduced bias in the low SNR regime.

I. INTRODUCTION

Iterative processing of extrinsic information is known to be a powerful receiver technique for various estimation and detection
problems [1]. Among those, turbo equalization (iterative equalization and decoding) has been successfully employed to combat
intersymbol interference (ISI). In the original turbo equalization scheme, proposed by Douillard et al. , an a-posteriori probability
(APP) equalizer has been suggested [2]. Later on, approaches with reduced complexity, mainly based on soft interference
cancellation, have been presented, for example see [3]–[6]. In this work, we consider turbo equalization schemes where the
equalizer follows the unbiased minimum variance (UMV) principle and applies soft interference cancellation (“UMVE-SIC”)
[7]. This type of equalizer is identical to the minimum mean-square error (MMSE) equalizer in [5] for BPSK modulation, but
shows superior performance for multi-amplitude signal constellations.

Our aim in this paper is to investigate the performance of turbo equalization schemes for the interesting and practically
relevant case when neither the channel impulse response (CIR) nor the signal-to-noise ratio (SNR) are perfectly known at the
receive side. In particular, we focus on the identification of powerful SNR estimators to be included in the iterative (turbo)
processing loop. Most turbo equalization schemes require an SNR estimate to compute the output log-likelihood ratios (LLRs)
of the equalizer. In our work, we consider transmission schemes where training symbols are regularly multiplexed into the
data stream in order to provide initial channel and SNR estimates. Thereby, the soft feedback from the channel decoder can be
incorporated into the SNR estimation algorithm to refine the initial training-based SNR estimate (adaptive turbo equalization).
In the literature, several approaches of combined turbo equalization and channel estimation (some of them including SNR
estimation) have been studied, see [8]–[10] and references therein. In [11], the effect of an SNR mismatch on the performance
of Log-MAP and Max-Log-Map equalizers has been investigated, and numerical results for iterative data-aided SNR estimation
are shown. A comparison of various SNR estimation algorithms has been carried out in [12] for the AWGN channel. However,
to the authors’ best knowledge, a study of the influence of imperfect training information on the performance of different SNR
estimators has not been addressed yet.

As a key result of our work we observe a performance degradation of the SNR estimators at increasing SNR when imperfect
training information such as soft data estimates are utilized. Therefore, we propose a modified SNR estimator with reduced bias
when having uncertain training information, leading to superior performance compared to purely training-based SNR estimation.
The paper is organized as follows: Section II introduces the system model, and the channel estimation and equalization scheme
is briefly described in Section III. Then, the SNR estimation algorithms under consideration are introduced in Section IV.
Numerical results and conclusions are discussed in Section V.

II. SYSTEM MODEL

We use the following notation: upper case bold letters indicate matrices and lower case bold letters stand for column vectors.
IN denotes the N ×N identity matrix. The element in ith row and jth column of a matrix A is denoted by [A]i,j . (·)† stands
for conjugate complex transposition.

Consider the communication system depicted in Fig. 1. A vector q of Nq source bits is encoded by a terminated convolutional
code with code rate Rc = Nq/Nc and permuted by an S-random interleaver Π [13] with S = 18. The Nc interleaved code
bits c are mapped onto symbols taken from a PSK signal constellation A with constant unit energy, Es = 1, to form a vector
of data symbols x = [x1, x2, . . . , xN ]T of length N . Transmission of data is organized in frames s = [s1, s2, . . . , sP+N ]T

that are built from both the N data symbols and P training symbols p chosen randomly from the set {−1;+1}. A frame has
length P +N and obeys the following pattern: alternately P/K training symbols followed by N/K data symbols are filled in,
where K > 0 is an integer. Afterwards, these frames are transmitted over a discrete-time, symbol-spaced ISI channel with L
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Fig. 1. Communication system employing adaptive turbo equalization at the receive side.

taps and CIR h = [h0, h1, . . . , hL−1]
T , having constant unit energy Eh = 1. For conceptual ease, we assume a time-invariant

channel and perfect synchronization at the receiver. Thus, the received symbols are obtained by yk =
∑L−1

l=0 hlsk−l + nk.
k denotes the discrete (symbol) time index. The nk are samples from a complex AWGN process with variance σ2

n = N0/2
per component. Since the channel is not time-varying, all training symbols may be put in the beginning of a frame, i. e. , we
consider the case of K = 1. At the receive side, the training symbols are used to obtain an initial estimate of the CIR and
the SNR (“EST”). We define the SNR ρ at the output of a hypothetical channel matched filter1 as ρ , Ps/Pn, where Ps

and Pn denote the average discrete signal and noise energy, respectively. Thus, we obtain ρc = Es/N0 for complex signal
constellations and ρr = 2Es/N0 for real-valued signal constellations (independent from the channel, since Eh = 1) [12]. After
initial channel and SNR estimation, iterative equalization and decoding is performed. Thereby, the extrinsic LLRs LD(c) of
the decoder are possibly used to refine the SNR estimate ρ̃ and/or channel estimate h̆ = [h̆0, h̆1, . . . , h̆L−1]

T .

III. CHANNEL ESTIMATION AND EQUALIZATION

We employ recursive least squares (RLS) channel estimation with a forgetting factor λ = 0.999. Details of RLS estimation
can be found in [14]. Note that λ < 1 allows the RLS algorithm to track a possibly time-varying CIR. RLS estimation
offers the advantage that it can be easily extended to soft iterative data-aided channel estimation [9], while still providing a
moderate complexity in contrast to maximum-likelihood data-aided channel estimation. Thereby, soft data symbol estimates
are used to refine the initial training-based channel estimate. These soft symbol estimates are computed as the expected
values of the data symbols using the extrinsic LLRs of the decoder given by LD(c) = [LD(c1)

T , . . . , LD(cN )T ]T , where
LD(ci) = [LD(ci,1), . . . , LD(ci,m)]T denotes the m = log2 M extrinsic LLRs corresponding to the data symbol xi. The LLR
of a code bit c is defined by L(c) = ln(P (c = 0)/P (c = 1)). Thus, for BPSK modulation the soft data symbol estimates are
given by s̆j = tanh(LD(ci)/2), i = 1, . . . , N , where j = P + i denotes the position of the ith data symbol in the transmit
frame. For later reference we introduce vj = 1 − s̆ 2

j as the corresponding variance estimate. In the case of general signal
constellations, the expressions for soft symbol estimates and corresponding variance estimates can be found in [4]. Note that
at positions j where pilot symbols pj are transmitted, we define accordingly s̆j = pj and vj = 0 (j = 1, . . . , P ).

Equalization is carried out with the UMVE-SIC. A detailed derivation of turbo equalization with the UMVE-SIC for block
transmission schemes can be found in [15]. Here, we consider an implementation of the UMVE-SIC as a linear filter with
Nf = N1 + N2 + 1 time-varying filter coefficients wk = [wk,−N1

, wk,−N1+1, . . . wk,N2
]T that can be easily derived from

[15], following the approach in [5]. Let us consider equalization of the kth symbol in the lth (l = 1, 2, . . .) iteration of
the turbo equalization scheme, where an iteration covers a single equalization and decoding step. The equalizer operates
on a part of the received data vector, yk , [yk−N2

, yk−N2+1, . . . , yk+N1
]T , the channel estimate h̆, noise power estimate

P̃n, and uses a vector of soft data symbol estimates s̆\k = [s̆k−L−N2+1, . . . , s̆k−1, s̆k+1, . . . , s̆k+N1
]T with corresponding

variance estimates v\k = [vk−L−N2+1, . . . , vk−1, vk+1, . . . , vk+N1
]T , where the kth symbol is excluded according to the turbo

principle. Let H denote the Nf ×(Nf +L−1) channel convolution matrix [5] based on the CIR h so that yk = Hsk +nk with
sk , [sk−L−N2+1, sk−L−N2+2, . . . , sk+N1

]T and nk , [nk−N2
, nk−N2+1, . . . , nk+N1

]T . Furthermore, let H\k be H without
the (N2 + L)th column g , [H]:,N2+L.

Then, after soft interference cancellation based on s̆\k, the remaining ISI is further reduced by the linear filter with coefficients
wk yielding finally the symbol estimate x̃k of the data symbol xk
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x̃k = w
†
k(yk − H\ks̆\k) with w

†
k =

g†Φ−1
k

g†Φ−1
k g

and Φk = H\kDiag(v\k)H†
\k

+ PnINf
, (1)

where Pn is given by N0/2 for real-valued and N0 for complex-valued signal constellations, respectively. The extrinsic output
LLRs LE(c) = [LE(c1)

T , . . . , LE(cN )T ]T with LE(ck) = [LE(ck,1), . . . , LE(ck,m)]T of the equalizer are finally obtained
by assuming a Gaussian distribution of x̃k with the output variance estimate 2σ2

E,k = 1/(g†Φ−1
k g) [15]. Since in our case the

CIR h and the noise power Pn are unknown, we replace in (1) H\k with H̆\k, g with ğ (similar definitions, but now based
on the CIR estimate h̆), and Pn with a noise power estimate P̃n.

LE(c) is fed to the decoder after deinterleaving (Π−1) which computes extrinsic LLRs LD(c) and initiates the next iteration.

1Since the receiver does not know the CIR, the exact channel matched filter cannot be implemented.
2Diag(·) creates a diagonal matrix from a vector argument.



IV. SNR ESTIMATION

The SNR estimation algorithms under consideration operate on the channel output symbols after (approximately) collecting
the energy of the useful signal part, and (imperfect) cancellation of the ISI. Note that the noise sequence after this procedure
is assumed to be still white, thus, this approach could be implemented by using a matched filter followed by a whitening filter
with subsequent ISI cancellation. Since we have a system model on symbol basis, we may alternatively express the resulting
symbols by first (imperfect) cancellation of the complete useful signal part and finally adding the estimated transmit signal
weighted with the estimated energy yielding

ỹk = yk −

L−1∑

l=0

h̆ls̆k−l +
√

E
h̆
s̆k with E

h̆
=

L−1∑

l=0

|h̆l|
2. (2)

Thus, for perfect channel estimation h̆ = h and perfect symbol estimates s̆k = sk, ỹk in (2) would correspond to received
symbols when transmitting over an AWGN channel yielding ỹk = sk + nk. In the first iteration, SNR estimation is based on
the received symbols corresponding to known (training) symbols, only. In further iterations, soft data symbol estimates from
the decoder may be exploited to extend estimation over the received data symbols. We compare three different standard SNR
estimators; two of them are discussed in detail in [12]: A maximum-likelihood estimator (ML-E) with reduced bias and a
second-and-fourth-order-moments estimator (M2M4-E). For real-valued symbols we have

ρ̃ML =

(
1
T

L+T−1∑
k=L

ỹks̆k

)2

1
T−3

L+T−1∑
k=L

ỹ 2
k − 1

T (T−3)

( L+T−1∑
k=L

ỹks̆k

)2
and ρ̃M2M4 =

1
2

√
6M2

2 − 2M4

M2 −
1
2

√
6M2

2 − 2M4

, (3)

where M2 = 1/T
∑L+T−1

k=L ỹ 2
k and M4 = 1/T

∑L+T−1
k=L ỹ 4

k . The corresponding expressions for complex-valued symbols can
be found in [12]. Estimation is based on in total T symbols; the first L− 1 received symbols are not used for estimation due
to the channel memory. In contrast to the M2M4-E, the ML-E is a data-aided estimator and may utilize both training symbols
and extrinsic soft estimates of the data symbols. In addition, we include an approach that directly estimates the noise power
by simply averaging over the squared magnitude of the estimated noise samples that corresponds to the minimum variance
unbiased estimator of a nonrandom parameter [16, Ch. IV.C]. We refer to this estimator as the direct estimator (D-E)

ρ̃D =
E

h̆

P̃n,MVUE

with P̃n,MVUE =
1

T − 1

L+T−1∑

k=L

|yk −
L−1∑

l=0

h̆ls̆k−l|
2. (4)

Note that P̃n,MVUE in (4) has been applied to noise power estimation in [11]. The estimate P̃n of the noise power Pn required
for equalization is obtained from (3) or (4) by E

h̆
/ρ̃.

As a figure of merit for the performance of the SNR estimators we consider the normalized MSE defined by
µ = E{(ρ̃ − ρ)2/ρ2}, as well as the normalized bias given by b = E{(ρ̃ − ρ)/ρ}.

V. NUMERICAL RESULTS AND DISCUSSION

Figs. 2 and 3 show numerical results for the normalized MSE performance and the normalized bias of the SNR estimators
under consideration. As an example for an ISI channel we choose channel (b) with the CIR h = [0.407 0.815 0.407]T taken from
[17]. One-shot training-based channel estimation with the RLS estimation algorithm is employed. Here, the decoder’s output
LLRs are modeled as i. i. d. Gaussian random variables for an arbitrarily chosen average mutual information of I

(
c;LD(c)

)
=

0.9, see [18]. Therefore, note that the equalization and decoding step has been omitted, since both SNR and channel estimator
require only received symbols and possibly soft feedback from the decoder. The number of training symbols is P = 30, and
BPSK modulation with a data block length of Nc = N = 1024 is applied. When only training symbols are used for SNR
estimation, the ML-E and D-E perform similarly as expected, see [16]. Interestingly, we observe that a-priori information
improves the normalized MSE performance only in a certain SNR range. We observe an asymptotic (SNR→ ∞) MSE of 1
and an asymptotic bias of −1 if uncertain training information (soft data estimates) is used (all dashed lines except for *).
This behavior can be intuitively justified by the following proposition concerning the much simpler case of an AWN channel.

Proposition 1: The asymptotic normalized MSE µ∞ and asymptotic normalized bias b∞ of the D-E for an AWGN channel
with BPSK modulation and imperfect training information is given by µ∞ = 1 and b∞ = −1, respectively.

Proof: Let yk = sk + nk be the received symbols and let s̆k denote the (imperfect) symbol estimates for the transmit
symbols sk with average mutual information I

(
sk; s̆k) < 1. The noise power of the AWGN process with samples nk is Pn =

N0/2. With increasing number of symbol estimates the time average in (4) arbitrarily closely approximates the corresponding
expected value, i. e. , we have P̃n → E{(yk − s̆k)2}. Exploiting that sk and s̆k are both statistically independent from the noise
process we obtain after some manipulations P̃n = 1 + Pn + Es̆ − 2a, where we defined a as a , E{sks̆k} and Es̆ , E{s̆ 2

k }.



Note that a and Es̆ are constants that depend only on the average mutual information I
(
sk; s̆k). The SNR ρ is given by

ρ = 1/Pn. Recalling the definition of the normalized bias we obtain b = ρ̃/ρ − 1 = Pn/(1 + Pn + Es̆ − 2a) − 1 and thus
b∞ = limρ→∞b = −1. The normalized MSE can be written as µ = (ρ̃/ρ)2 − 2ρ̃/ρ + 1 that finally yields µ∞ = 1.
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Fig. 2. Normalized MSE vs. SNR. Channel (b). One-shot channel
estimation with training symbols. Solid lines: SNR estimation with
training symbols. Dashed lines: SNR estimation with training and soft
data symbol estimates.
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Fig. 3. Normalized bias vs. SNR. Channel (b). One-shot channel
estimation with training symbols. Solid lines: SNR estimation with
training symbols. Dashed lines: SNR estimation with training and soft
data symbol estimates.

Motivated by this result we consider an improved adaptive version of the D-E, where the uncertainty of the training information
is taken into account. Es̆ can be approximated by the time average of the N variance estimates of the soft symbols, i. e. ,
Es̆ ≈ 1 − v̄, where v̄ = 1/N

∑P+N
k=P+1 vk. Moreover, assuming correct signs of the LLRs we have a ≈ E{|s̆k|} which could

be again approximated using v̄ yielding a ≈ 1 − v̄. Thus, one obtains P̃n ≈ Pn + v̄, i. e. , the D-E overestimates the noise
power for uncertain training information. Subtracting the average variance v̄ from P̃n yields a modified adaptive (depending
on the reliability of the decoder’s output LLRs) version of the D-E that shows an improved MSE performance and a reduced
bias in the low SNR regime according to Figs. 2 and 3. Since several approximations are employed and finite block lengths
are considered one has to be careful with this subtraction. Therefore, we apply the modified D-E only, when the condition
P̃n > αv̄ is satisfied. We found that α = 1.3 yields satisfactory results. We remark that the idea of an correction of the initial
noise power estimate P̃n can also be found in [11], however, our approach has the advantage that it is adaptive.

The results in Figs. 2 and 3 suggest that also uncertain training information could be used adaptively, i. e. , only if an
improvement of the initial training-based SNR estimate can be expected. This idea corresponds to the suggestion made in
[9] for soft iterative data-aided channel estimation. Figs. 2 and 3 depict the results for the modified D-E that uses soft data
estimates only, when the criterion βP̃n,tr > v̄ is satisfied, where P̃n,tr denotes the noise power estimate for perfect training
information. β is similar like α a heuristic factor, required due to the impossibility of an exact analysis. Thus, if the estimated
noise power exceeds the variance estimate v̄ it becomes more likely that the overall performance can be improved by the
unreliable training information. Here, we choose β = 1.5. With this approach the poor asymptotic behavior of the modified
D-E is circumvented.

Next we give examples for the BER performance of our adaptive turbo equalization scheme. Since according to Figs. 2 and
3 the best performance in the case of imperfect training information is obtained with the D-E, we focus on this estimator in
the following. We apply a channel code of rate 1/2, memory 2, with generators (1 + D2, 1 + D + D2). The number of source
bits is Nq = 510, yielding Nc = N = 1024 for BPSK modulation. The number of turbo iterations is set to 5. In the first
example shown in Fig. 4, we consider data transmission over channel (b). The numbers of filter coefficients in the equalizer
are N1 = 5 and N2 = 3, the number of training symbols is P = 30. The gain of the modified D-E over the D-E is in the
order of 0.5 dB, but could be further enhanced when applying a more complicated criterion to compensate for the uncertainty
of the training information (not shown). The usage of the criterion βP̃n,tr > v̄ did not show an improvement compared to the
modified D-E, therefore corresponding results are omitted. We remark that the degradation of the modified D-E observed in
Figs. 2 and 3 for high SNR is not visible in Fig. 4, since we operate in the low SNR regime (here ρr corresponds directly
to Eb/N0 values) and with varying amount of a-priori information. However, the D-E with soft iterative channel estimation
indeed shows a slightly worse performance than the purely training-based estimation approach. Furthermore, note that the gap
from the modified D-E to perfect SNR knowledge is only about 0.5 dB when using soft iterative channel estimation.

In the second example we consider a scenario with a larger amount of ISI using channel (c) with
h = [0.227 0.46 0.688 0.46 0.227]T from [17]. The numbers of filter coefficients in the equalizer are now N1 = 9 and N2 = 5,
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the number of training symbols is P = 100. All other parameters are chosen as described above. The BER performance is
shown in Fig. 5. Here, the improvement of the modified D-E over the D-E is more prominent. However, there is still a large
gap of about 3 dB to the curve corresponding to perfect SNR and channel knowledge. Note that the curves with one-shot
training-based channel estimation have been omitted, since the performance has been only slightly worse compared to iterative
channel estimation.

We conclude that by taking into account the uncertainty of imperfect training information, the SNR estimation can be
improved. Future work will consider the case of multi-amplitude signal constellations and time-varying channels.
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