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Abstract

We propose two feedback based transmitter preprocessing techniques to overcome the diversity loss issue of quasi-orthogonal space-time
block-codes (QO-STBCs). The algorithms are proposed for an OFDM channel with four transmit and one receive antennas. In order to decrease the
feedback overhead substantially, a frequency bin partitioning method based on majority voting is proposed . The performance of the preprocessing
algorithms is investigated in the presence of feedback errors. It is demonstrated that both methods provide significant gain over the open loop
QO-STBC even for a moderate feedback error rate such as10−2 and with reduced feedback overhead using frequency bin partitioning.

I. I NTRODUCTION

Employing multiple antennas at the transmitter and the receiver is an efficient method to enhance the performance of a wireless
communication system through exploitation of spatial diversity. The limitations in the mobile terminal, such as dimension, weight, battery
power consumption etc., have caused considerable attraction to the transmit diversity techniques such as transmit beamforming and space-time
block codes for the downlink. Although transmit beamforming provides superior downlink performance, it requires high precision and high
quality channel state information at the transmitter (Tx-CSI). This makes transmit beamforming infeasible for many wireless applications
due to the requirement for extensive feedbacks. Moreover, error in the Tx-CSI can result in substantial degradation in the beamformer
performance.

Instead, the recently introduced space-time coding eliminates the need for Tx-CSI while preserving the diversity gain, [1]. In this study,
we will focus on space-time block codes (STBCs) [2], [3] and [4]. Although STBCs require a very simple decoding algorithm and provide
full diversity order, complex valued orthogonal-STBCs (O-STBCs) attain full code rate only for two transmit antennas. For more than two
antennas, the code rate drops below unity, if full diversity order is to be retained. Quasi-Orthogonal (QO)-STBCs [5] have been proposed to
increase the code rate to unity but they suffer from loss in the diversity order because of certain coupling between detected symbols [6].

In [7], two techniques based on partial Tx-CSI were proposed to overcome this coupling problem and to restore the full diversity order
for QO-STBCs. One of the proposed methods is based on the rotation of the phase of the signals transmitted from certain antennas in a
prescribed way, whereas the other one selects best two antennas out of four according to the quality of the individual channels. Both methods
provide diversity order of four with very little feedback which can be as low as one or two bits per frame.

Orthogonal frequency division multiplexing (OFDM) is the most widely preferred signaling technology for future generations wireless
communication systems. In this paper, we extend these closed-loop QO-STBC techniques to OFDM. Unlike a TDMA system with flat-fading
channel or a CDMA system possibly with frequency selective fading channel [7] where only one or two bits feedback per frame is adequate,
in OFDM, each subcarrier requires a separate feedback, resulting in a substantial increase in the feedback overheads. However, by exploiting
the correlation between the response of adjacent frequency bins, the need for feedback is decreased considerably by data compression. In
this study we investigate a majority voting based method for both feedback schemes. Although this method is information lossy, it provides
very satisfactory performance.

In a time-division multiple access (TDMA) based transmission, Tx-CSI can be obtained from the knowledge of the reciprocal channel if
the coherence time of the channel is long enough. If a frequency-division multiple access (FDMA) based transmission is employed, the CSI
available at the receiver can be sent to the transmitter through a feedback channel. However, due to practical reasons, such as noise in the
feedback channel, channel estimation error at the receiver, variations of the feedforward channel during CSI feedback period, etc., Tx-CSI
is exposed to feedback errors. We will also investigate the robustness of the proposed methods against such feedback errors.

II. PROBLEM STATEMENT

Consider a communication channel with four transmit and one receive antennas. Although we consider single receive antenna for notational
simplicity, it is straightforward to extend this scheme to multiple receive antennas [8]. Each subchannel,hi[n] =

∑L−1
j=0 hi,jδj−n, i = 1, ...4,

is assumed to have independent frequency-selective fading. Here,L is the multipath spread of all subchannels, the zero-mean complex-valued
circularly symmetric Gaussian random variablehi,j represents thej-th path coefficient of the channel between thei-th transmit antenna and
the receive antenna, andδn is the Kronecker delta function.

As it is well-known, in an OFDM scheme with a channel multipath spread ofL samples, the channel can be diagonalized if a cyclic
prefix of lengthP > L is added to the data frame. Under this condition, theN subcarriers behave as frequency-flat fading sub-channels
with coefficients

[
λi,1 · · · λi,N

]T
= Q

[
hi,1 · · · hi,L−1 0

]T
. Here,Q is the N × N FFT operator and0 is the (N − L) × 1

all-zero vector.
For the QO-STBC, we will employ the following4N × 4 codematrix

CQO =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
−s∗3 −s∗4 s∗1 s∗2
s4 −s3 −s2 s1


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Fig. 1. The proposed system model with four transmit and one receive antennas. The QO-STBC to be transmitted is depicted on the left hand side besides
the weighting of the antennas used in the proposed algorithms. The channel coeffientsΛi are the effective flat-fading representations ofhi[n] after frequency
domain transformation.

where the elements of theN × 1 OFDM symbol vectorssk, k = 1, ..., 4, are drawn from complex valued constellations, andN is the
number of subcarriers in the OFDM symbol. The vertical axis of the matrixCQO represents the time dimension whereas the horizontal
axis represents the spatial dimension, i.e. the entry in position[CQO]i,j is transmitted from thej-th antenna during thei-th time slot. The
channel is assumed to be quasi-static, i.e. the channel coefficientshi,j , ∀i, j are assumed to remain constant over a frame period consisting
of four OFDM symbols. Although there exist many forms of QO-STBC, for example [5] and [6], they all possess similar properties and we
chose this codematrix for its similarity to the well-known Alamouti’s code [2].

In order to visualize the problem, consider the setup in Figure 1. The signal at the receive antenna over four OFDM symbol periods can
be written in a vector form as 



r1

r∗2
r∗3
r4


 =




Λ1 Λ2 Λ3 Λ4

Λ∗2 −Λ∗
1 Λ∗4 −Λ∗3

Λ∗3 Λ∗
4 −Λ∗1 −Λ∗2

Λ4 −Λ3 −Λ2 Λ1







s1

s2

s3
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
 +




n1

n∗2
n∗3
n4




r = ∆S + n

where each entry of the4N × 1 vectorr corresponds to the signal received at each OFDM symbol periodt = 1, ..., 4 (the second and third
entries are complex conjugated without loss of generality). TheN × 1 vectorsni, i = 1, ..., 4 represent the zero-mean circularly symmetric
additive white Gaussian noise, and the matricesΛi, i = 1, ..., 4 are diagonal matrices with the frequency response of the corresponding
channel on the main diagonal, i.e.Λi = diag{λi,1, ..., λi,N}. The coefficientsΘi, i = 1, ..., 4 will be defined in the next section, but for
the time being, assume thatΘi = I, ∀i.

After matched filtering [6], i.e.
rmf = ∆Hr = ∆H∆S + ∆Hn,

we observe that

∆H∆ =




Γ 0 0 A
0 Γ −A 0
0 −A Γ 0
A 0 0 Γ




whereΓ =
∑4

i=1 |Λi|2 andA =2Re{Λ1Λ
∗
4 −Λ2Λ

∗
3}.

For O-STBCsA = 0, hence there is no coupling between detected signals, and the components ofS can be directly detected from the
output of the matched filter,rmf , which is also optimum in the maximum likelihood sense. However, for QO-STBC,A is nonzero and
causes coupling between symbols. The optimum receiver is no longer a symbol-by-symbol detector and a loss in diversity order occurs due
to this coupling. Instead a joint detection algorithm has to be employed to take the coupling between the first and the fourth symbols and
the second and third symbols into consideration.

In the sequel, we will propose and investigate two transmitter preprocessing methods depending on partial Tx-CSI to eliminate this
coupling, so that the full diversity order is obtained and the optimum receiver becomes identical to that of O-STBCs.

III. O RTHOGONALIZATION WITH PARTIAL TX-CSI

Prior to transmission, assume that we multiply the signal to be transmitted from antennai with an N × N diagonal matrixΘi. Hence
we can write the modified coupling term as

A′=2 Re{Λ1Λ
∗
4Θ1Θ

∗
4 −Λ2Λ

∗
3Θ2Θ

∗
3} (1)

which will provide a general expression for the following algorithms.

A. Phase rotation algorithm

Assume thatΘ1 = Θ2 = IN andΘ3 = Θ4 = ejΦ, where the entries of the diagonal matrixΦ are phase angles. Hence, the coupling
term A′ becomes

A′=2Re{(Λ1Λ
∗
4 −Λ2Λ

∗
3)e

−jΦ}
=2Re{Ξe−jΦ}.



where theN ×N diagonal matrixΞ = Λ1Λ
∗
4 −Λ2Λ

∗
3. It can easily be verified that by rotating the phase of the diagonal components of

the matrixΞe−jΦ to e±jπ/2 (i.e. Re{e±jπ/2} = 0) using the matrixΦ, the coupling matrixA′ can be forced to zero. Therefore for the
phase rotation algorithm, we set

[Φ]n,n =
π

2
− ][Ξ]n,n

where]· is the angle operator. Observe that any entry ofΦ is effectively in the range[−π/2, π/2] (any point on the left semicircle has a
one-to-one counterpart on the right semicircle which makes the coupling zero). Since the coupling is forced to zero, the diversity order loss
of QO-STBCs is also eliminated, hence, this provides full diversity.

Since transmission of the exact phase angle inΦ through the feedback channel may require too much feedback overhead, we propose to
feedback the quantized phase angle. Let the number of available feedback bits per subcarrier beK. Then the phase angle[Φ]n,n can be
quantized according to the following expression

[Φ]n,n = arg min
[Φ]n,n∈Ω

Re{[Ξ]n,ne−j[Φ]n,n}

where the set of possible angle values,Ω, is

Ω = {± (2n− 1)π

2K+1
, n = 1, 2, · · · , 2K−1}.

For example, for a one bit feedback this set contains{−π/4, π/4}. Hence, the algorithm chooses among these values via one feedback bit
to minimize the coupling term.

B. Antenna selection algorithm

Another possible method to eliminate the coupling is the antenna selection algorithm. In this algorithm the diagonal entries of the matrices
Θi, ∀i assume two values,{0,

√
2}, according to the quality of the individual channels. Consider the following assignments for thek-th

subcarrier

|λ1,k|2 ≥ |λ4,k|2
|λ1,k|2 < |λ4,k|2

}
=⇒ [Θ1]n,n =

√
2 and [Θ4]n,n = 0

[Θ1]n,n = 0 and [Θ4]n,n =
√

2

|λ2,k|2 ≥ |λ3,k|2
|λ2,k|2 < |λ3,k|2

}
=⇒ [Θ2]n,n =

√
2 and [Θ3]n,n = 0

[Θ2]n,n = 0 and [Θ3]n,n =
√

2.

This operation partitions the transmit antennas into two pairs (Ant1, Ant 4) and (Ant 2, Ant 3) separately for each subcarrier. One of the
two antennas in each pair is chosen according to the above inequality test, and the total transmit power is allocated to the best two antennas
while the other two antennas are switched off. The same operation is also applied to the other pair. Therefore, the total transmit power is
preserved.

Since one of the component of the diagonal entries ofΘ1Θ
∗
4 andΘ2Θ

∗
3 in (1) is always zero, this selection ofΘi, ∀i makesA′ zero.

Moreover, as it will be demonstrated in the simulations, this algorithm restores the diversity gain of QO-STBC to four.

IV. REDUCING FEEDBACK OVERHEAD DUE TOOFDM

Although the above methods require very little feedback per subcarrier, when all theN subcarriers are considered, the total amount of
feedback can be excessive. However, investigating the behavior of the feedback information for a moderate wireless communication channel
model, we observed a strong correlation among subcarriers so that there is a significant amount of redundancy in the feedback.

An illustrative example for the phase rotation algorithm is given in Figure 2, for an equal-power five-tap multipath fading channel. The
solid line shows the actual phase value, whereas the ‘stem’ drawing shows the one bit quantized phase value for the feedback. Similar
behavior of the ‘stem’ drawing is also observed for the antenna selection algorithm.

Therefore, there exists a strong correlation between adjacent subcarriers. We can exploit this correlation to decrease the amount of feedback
by employing a compression algorithm.

In this paper we propose a very simple majority voting method for this purpose. The frequency range is divided into smaller partitions,
each with the same length, i.e.N/2l, l = 0, 1, .., log2N . Then a majority voting is applied within each partition deciding the feedback
value for that particular partition. Although this is an information-lossy compression method, simulations have revealed that it yet provides
a satisfactory performance-feedback overhead trade-off.

In a practical system the feedback channel is also exposed to errors. This may be due to noise in the feedback channel, channel estimation
error at the receiver, variations of the feedforward channel during CSI feedback interval, etc. Therefore, in the simulations, we also investigate
the effect of the feedback errors on the performance of the proposed quantized transmit diversity schemes.

V. SIMULATIONS AND RESULTS

In the simulations we considered transmission over a4 × 1 MIMO channel with independent subchannels. Each subchannel has five
multipath components realized with zero-mean, equal-power, independent, circularly symmetric, complex Gaussian random variables. Each
OFDM subchannel has QPSK modulated 64 subcarriers and a cyclic prefix of length four is appended to each OFDM frame. For the noise
model AWGN was considered.

Although matched filter detection is optimum in the ML sense for the perfect feedback scenarios, there remains some coupling when the
feedback is quantized and/or exposed to errors. Hence we employed the ML algorithm explained in [5] to reduce these effects.
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Fig. 2. An illustration of the feedback information. For the phase feedback algorithm, the actual phase values is shown with solid lines, whereas the ‘stem’ is
the corresponding one-bit quantized phase value. Observe the strong correlation between adjacent bins. The same behaviour is also observed for the antenna
selection algorithm.
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Fig. 3. BER performance comparison of the phase feedback algorithm when exposed to quantization and feedback errors. Only one bit feedback performs
almost equally well as the full feedback scheme. Also the phase feedback algorithm is very robust against feedback errors and the effect of feedback error
rate of10−2 is negligible.

Figure 3 demonstrates the effect of quantization, partitioning and feedback errors on the phase feedback algorithm. The perfect phase
feedback case provides approximately 2 dB gain in BER performance at BER=10−3 when compared to the open-loop QO-STBC. However
this requires a feedback of 64 phase values in the range[−π/2, π/2] in terms of real numbers. When the phase value is quantized to one
bit per subcarrier, the loss in performance is almost negligible as seen from Figure 3 and it requires 64 bit feedback.

Even this much of feedback can introduce too much overhead to a practical application. Therefore, we divided all frequency bins into
8 partitions, each composed of 8 adjacent bins and majority voting is applied to these 8 bins to decide the ‘representative’ bit for each
partition. As can be seen from Figure 3, this scheme provides a performance close to the perfect phase feedback case with an acceptable
loss of approximately 0.5 dB at BER=10−3. When the feedback bits are exposed to error, it is observed in Figure 3 that an error rate of
Pe ≤ 10−2 has almost no effect on the performance. This makes the algorithm very robust to moderate feedback errors. Even for an error
rate ofPe = 0.1, the loss is less than 0.3 dB.

We observe a similar immunity to feedback errors for the antenna selection algorithm as can be seen from Figure 4. The loss in performance
for Pe ≤ 10−2 is negligible. However, this algorithm is more sensitive to partitioning. When the same amount of feedback bits, i.e. 8 bits, is
used we can form 4 partitions, since now two feedback bits are required per partition, and the loss in performance for this case is almost 2.5
dB at BER=10−3 closing the gap between the open-loop performance to only 0.5 dB. Therefore, we had to increase the number of feedback
bits to 16, constructing 8 frequency bin partitions. In this case, the performance gain compared to the open-loop QO-STBC is more than 2
dB.

Figure 5 demonstrates the sensitivity of both algorithms to feedback error rate. Both algorithms are very robust to error rates lower than
10−2. However, as the error rate increases, their performance degrades. However, the phase rotation method is more robust than the antenna
selection method.
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VI. CONCLUSIONS

The sensitivity of two transmit diversity techniques for OFDM based QO-STBC schemes against feedback quantization and feedback
errors was investigated. A full feedback scheme for OFDM needs too much feedback information which may not be feasible for a practical
application. It was found quantization and subcarrier partitioning can reduce the feedback overhead significantly. Our simulation studies
revealed that even for a moderate feedback error rate of around10−2, the proposed algorithms retain satisfactory BER performance,
demonstrating the robustness of the proposed algorithms against feedback errors.

REFERENCES

[1] V. Tarokh, A. Naguib, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance analysis and code
construction,”IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 744–765, Mar. 1998.

[2] S. Alamouti, “A simple transmit diversity technique for wireless communications,”IEEE Journal on Selected Areas in Communications, vol. 16, no. 8,
pp. 1451–1458, Oct. 1998.

[3] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-time block codes from orthogonal designs,”IEEE Transactions on Information Theory, vol. 45,
no. 5, pp. 1456–1467, July 1999.

[4] ——, “Space-time block coding for wireless communications: Performance results,”IEEE Journal on Selected Areas in Communications, vol. 17, no. 3,
pp. 451–460, Mar. 1999.

[5] H. Jafarkhani, “A quasi-orthogonal space-time block code,”IEEE Transactions on Communications, vol. 49, no. 1, pp. 1–4, Jan. 2001.
[6] C. B. Papadias and G. J. Foschini, “A space-time coding approach for systems employing four transmit antennas,” inIEEE ICASSP, 2001, pp. 2481–2484.
[7] C. Toker, S. Lambotharan and J. A. Chambers, “Closed loop quasi-orthogonal STBCs and their performance in multipath fading environments and when

combined with turbo codes,”IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 1890–1896, Nov. 2004.
[8] C. Toker, “Signal processing algorithms and architectures for communication transceivers,” PhD Dissertation, King’s College London, University of

London, Oct. 2004.


