

SIEMENS

Program and System Engineering PSE

CC-CDMA for B3G Wireless Communications : an overview and some open issues

Mobile Systems and Solutions Pavol Švač, Martin Piekov

30.10.2003

OUTLINE

- B3G Motivation
- Conventional CDMA Approach
- CC-CDMA (Complete Complementary-CDMA) Approach
- Conceptual Diagram Of DL-Receiver
- System Description
- Spreading Efficiency
- Codes for CC-CDMA Systems
- Conclusion

B3G Motivation

- Maturing of 3G technologies motivates us to think about the possible B3G architectures
- At present it is not clear how the mobile communications beyond 3G (B3G) will look like
- The wide-band mobile communication B3G systems have to offer a wide variety of interactive multimedia services based on variable data rates for maximum number of users, global mobility, service portability, ...
- It is expected that they should deliver a much higher data rate than is achievable in current systems (up to 100 Mbps)
- How to guarantee such a high data rate and what types of air-link architecture should be used

Conventional CDMA approach

Let $I = [i_1, i_2, \cdots, i_k, \cdots, i_N]$ be information signal and

 $A_1 = [a_{11}, a_{12}, \cdots, a_{1L}]$ signature code of user #1

$$i_1 \cdot A_1$$
 $i_2 \cdot A_1$ $i_3 \cdot A_1$ \cdots $i_N \cdot A_1$

Fig.1: General CDMA spreading

CC-CDMA Approach

Fig.2: Offset stacked spreading

System description 1/2

- Let $I^A = [i_1^A, i_2^A, \dots, i_N^A]$ be the information signal of the user #1 with two signatures $A_0 A_1$
- Let $I^B = [i_1^B, i_2^B, \dots, i_N^B]$ be the information signal of the user #2 employing signatures $B_0 B_1$
- Transmitter: $f_1: (I^A * A_0) + (I^B * B_0)$ $f_2: (I^A * A_1) + (I^B * B_1)$

System description 2/2

Receiver of the user #1 :

$$f_1: [(I^A * A_0) + (I^B * B_0)] * \overline{A}_0$$

$$f_2: [(I^A * A_1) + (I^B * B_1)] * A_1$$

then

$$[(I^{A} * A_{0}) + (I^{B} * B_{0})] * \overline{A}_{0} + [(I^{A} * A_{1}) + (I^{B} * B_{1})] * \overline{A}_{1} =$$

$$= [(I^{A} * A_{0}) * \overline{A}_{0} + (I^{B} * B_{0}) * \overline{A}_{0}] + [(I^{A} * A_{1}) * \overline{A}_{1} + (I^{B} * B_{1}) * \overline{A}_{1}] =$$

$$= [I^{A} * (A_{0} * \overline{A}_{0}) + I^{B} * (B_{0} * \overline{A}_{0})] + [I^{A} * (A_{1} * \overline{A}_{1}) + I^{B} * (B_{1} * \overline{A}_{1})] =$$

$$= [I^{A} * (R_{A_{0}A_{0}} + R_{A_{1}A_{1}})] + [I^{B} * (R_{A_{0}B_{0}} + R_{A_{1}B_{1}})]$$
MAI = 0

CC-CDMA Transmitter-Example User #2 : $I^{B} = [1,1]$ **User #1**: $I^{A} = [1,0]$ $B_0 = [+ + - +]$ $A_0 = [+ + -]$ + ++ + + + + + + + 2 0 0 1 = 220 - 22 $f_1:$ 0 -2 1 1 0 1 + $B_1 = [+ - -]$ $A_1 = [+ - + +]$ + + +— = 2 - 2 0 - 2 - 2 f_2 -2 | -2 | -11 0 1 -2 2 0 | -1 | +

L+1 modulation levels !

KA UNI SIEMENS

CC-CDMA Receiver - Example

PSE-SK MSS Pavol Švač, Martin Piekov

30.10.2003

Spreading Efficiency 1/2

 Spreading Efficiency (SE) - the amount of information bits conveyed by each chip

Classical CDMA

CC-CDMA

$$SE_{CDMA} = \frac{k}{k \cdot L} = \frac{1}{L} \qquad SE_{CC} = \lim_{k \to \infty} \frac{k}{L + (k-1)} = 1$$

k – number of spread bits L – length of signature code

Spreading Efficiency 2/2

- The highest SE equal to one can be achieved, implying that every chip is capable of carrying one bit of information
- Higher SE means higher bandwidth efficiency in comparison to conventional CDMA systems under the same processing gain (PG)

Rate-Matching Algorithm 1/2

 The current 3G W-CDMA architecture is based on a complex and sometimes difficult rate-matching algorithm

 The new architecture is able to change the data transmission rate "on the fly"

Rate-Matching Algorithm 2/2

Codes For CC-CDMA 1/2

Complete Complementary Codes (CCC)

Element code length ($L = 4^n$)	4	16	64	256	1024	4096
$PG(L\sqrt{L})$	8	64	512	4096	32768	262144
Family size (\sqrt{L})	2	4	8	16	32	64
Flock size (\sqrt{L})	2	4	8	16	32	64

- Drawbacks
 - •• Existence only for $L = 4^n$
 - Relatively small family size

Codes For CC-CDMA 2/2

Complementary sets (CS)

Element code length $(L=2^n)$	2	4	8	16	32	64
PG (L^2)	4	16	64	256	1024	4096
Flock size (L)	2	4	8	16	32	64

 $=2^{n}$

Advantages

$$\sim$$
 Existence for L

- •• Higher PG
- Higher capacity

Codes For CC-CDMA Comparison

Complete complementary codes vs. Complementary sets

Element code length ($L = 2^n$)	2	4	8	16	32	64
PG of N-shift CC codes	-	8	-	64	-	512
Family size of N-shift CC codes	-	2	-	4	-	8
PG of Complementary sets	4	16	64	256	1024	4096
Family size of Complementary sets	2	4	8	16	32	64

Codes For CC-CDMA Summary 1/2

Complete complementary codes (CCC)

Advantages

- Based on N-shift complementary sequences
- Flexible recursive formula for generating of CCC

Drawbacks

- Existence only for $L = 4^n$
- Relatively small family size ⇒ low system capacity
- Necessity to use all code elements since all elements designate AAC function of particular flock
- If one ore more code elements are missing, AAC function contains non-zero sidelobes

Codes For CC-CDMA Summary 2/2

Complementary sets (CS)

Advantages

- Existence for
- Higher PG
- Higher capacity

$$L = 2^{n}$$

$$PG_{CS} = \sqrt{L} \cdot PG_{CCC}$$

$$C_{CCC} = \sqrt{L} \cdot C_{CCC}$$

Recursive formula for generating

Drawbacks

- Code elements designating resulted AAC of particular set are general binary sequences
- Higher sensitivity of AAC function when one or more code elements from the set are missing

Conclusion

Merits of CC-CDMA

- SE = 1: very high bandwidth efficiency
- MAI free operation for UL & DL
- Rate matching with no need to "stop and search" for a code with specific SF

Potential improvement

- Propose code sets with higher capacity
- Improve the flexibility of the new code sets from the detection point of view
- Decrease number of modulation levels < L+1</p>

References

- [1] H.H. Chen, J.F. Yeh, N. Suehiro, "A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications," *IEEE Comm. Magazine*, no.10, pp.126-135, Oct. 2001.
- [2] M.J.E. Golay, "Complementary sequences," *IEEE Trans. Inform. Theory*, vol. IT-7, pp.82-87, Apr. 1961.
- [3] N. Suehiro, M. Hatori, "N-shift cross-orthogonal sequences," *IEEE Trans. Inform. Theory*, vol. IT-34, no.1, pp.143-146, Jan. 1988.
- [4] C.-C. Tseng and C.L. Liu, "Complementary sets of sequences," *IEEE Trans. Inform. Theory*, vol. IT-18, pp.644-652, Sept. 1972.
- [5] J. Korhonen, "Introduction to 3G mobile communications," *Norwood MA: Artech House*, 2001

THANK YOU !