Optimality Considerations of Short-Length LDPC Codes Construction

Dejan Vukobratovic

Department of Telecommunications and Signal Processing University of Novi Sad Serbia and Montenegro

> November, 3rd 2005 COST 289 - 9th meeting, Madrid

> > Dejan Vukobratovic Optimality Considerations of Short-Length LDPC Codes Construct

Outline

Pseudocodewords of BP and LP decoder

Finite-Length Analysis

- Asymptotic Analysis
 - Density Evolution and approximations
 - Outputs capacity-approaching degree distributions
- Finite-Length Analysis
 - Well developed in the BEC case
 - Stopping Sets
 - Pseudocodewords Theory
 - Promising direction in finite-length analysis

Pseudocodewords of Tanner Graphs

- Concept introduced by Wiberg
 - Pseudocodewords on Computation Trees
 - N. Wiberg: "Codes and Decoding on General Graphs", PhD Thesis, Linkoping University, 1996.
- Further Refined by Koetter and Vontobel
 - Pseudocodewords on Graph Covers
 - R. Koetter and P. O. Vontobel:"Graph covers and iterative decoding of finite-length codes", Proc. of the 3rd intl. Conf on Turbo Codes and Related Topics, 2003.

ML Decoding as a Linear Program

Easy to convert ML decoding into:

$$\hat{\boldsymbol{x}}_{ML}(\boldsymbol{y}) = \hat{\boldsymbol{x}}_{ML}(\boldsymbol{\lambda}) = \arg\min_{\boldsymbol{x}\in CH(C)}\sum_{i=1}^{n}\lambda_i\cdot x_i$$
 (1)

- CH(C): Convex Hull of set C
- Log Likelihood Ratio: $LLR(y_i) = \lambda_i = \ln\left(\frac{Pr[y_i | x_i=0]}{Pr[y_i | x_i=1]}\right)$
- CH(C) is of exponential description complexity
- Fails to give a practical ML decoder

Fundamental Polytope

- Use standard Relaxation Technique from LP theory:
 - Replace CH(C) with less complex polytope
- Fundamental Polytope:
 - Each row [h_i] of [H] defines local SPC code C_i

$$\mathcal{P}(H) = \bigcap_{i}^{m} CH(C_{i})$$
(2)

- If w_H(h_i) is bounded by a constant as n grows:
 - Valid for LDPC codes
 - Linear number of constraints with n
 - Practical but suboptimal decoder

LP Decoding

LP Decoding:

$$\hat{\boldsymbol{x}}_{LP}(\boldsymbol{y}) = \hat{\boldsymbol{x}}_{LP}(\boldsymbol{\lambda}) = \arg\min_{\boldsymbol{x}\in\mathcal{P}}\sum_{i=1}^{n}\lambda_i\cdot\boldsymbol{x}_i$$
 (3)

- LP solution is always a vertex of optimization domain
- LP Pseudocodewords: set of vertices of \mathcal{P} , $V(\mathcal{P})$
 - C ⊂ V(P)
 F(P) = V(P)\C Set of Fractional Solutions
- J. Feldman and M.J. Wainwright and D.R. Karger:"Using linear programming to decode binary linear codes", Trans. on Inform. Theory, pp. 954-972, March 2005.

BP vs LP decoding

- LP decoder: Suboptimal decoder with a strong connections with BP decoder
 - Equivalent with BP decoder on BEC
 - D. Vukobratovic:"On the equivalence of BP and LP decoding on the BEC Channel", Proc. of the 4th Intl'. Workshop on Optimal Codes and Related Topics, 2005.
 - On AWGN Channel:
 - Same characterization of the set of Pseudocodewords
 - Fundamental Polytope
 - Further references on BP and LP connections:
 - P. O. Vontobel and R. Koetter:"On the relationship between linear-programming decoding and min-sum algorithm decoding", Proc. of the ISITA, 2004.

Fundamental Polytope and Fundamental Cone

• Conic Hull of the Fundamental Polytope \mathcal{P}

$$\boldsymbol{K}(\boldsymbol{\mathsf{H}}) = \{ \alpha \boldsymbol{x} | \alpha \ge \boldsymbol{\mathsf{0}}, \boldsymbol{x} \in \mathcal{P} \}$$
(4)

All-Zero Codeword LP Decoding Region

$$D_{\mathbf{0}}^{LP} = \{ \boldsymbol{\lambda} | \boldsymbol{\lambda} \cdot \boldsymbol{x} \ge 0, \forall \boldsymbol{x} \neq 0, \boldsymbol{x} \in V(\mathcal{P}) \}$$
(7)

- Convex Cone with apex in the origin
- Most of the $\mathbf{x} \in V(\mathcal{P})$ are redundant
- Minimal Pseudocodewords $M(\mathcal{P}) \subseteq V(\mathcal{P})$ describes $D_{\mathbf{0}}^{LP}$

$$D_{\mathbf{0}}^{LP} = \{ \boldsymbol{\lambda} | \boldsymbol{\lambda} \cdot \boldsymbol{x} \ge 0, \forall \boldsymbol{x} \neq 0, \boldsymbol{x} \in M(\mathcal{P}) \}$$
(8)

• The Fundamental Cone and the All-Zero Codeword Decoding Region are Dual Cones

The Dual Cone Relationship

Pseudo-weight of the pseudocodewords

- Generalization of the Hamming weight
- AWGN Pseudo-weight

$$\omega_P^{AWGNC}(\boldsymbol{x}) = \frac{\|\boldsymbol{x}\|_1^2}{\|\boldsymbol{x}\|_2^2}$$
(9)

- Distance between plane $\{\gamma \in \mathbb{R}^n \mid y\gamma^{\tau} = 0\}$ and point $+\mathbf{1} = (1, 1, \dots, 1)$
- Inversely proportional to $\angle(\mathbf{x}, \mathbf{1})$
- We are interested in the Minimal Pseudocodeword Weight Spectrum

Finite Geometries Codes

- Experimentally observed very good performance with BP decoding
 - Y. Kou and S. Lin and M.P.C. Fossorier:"Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results", Trans. on Inform. Theory, pp. 2711-2736, Nov 2001.
- Families of Type I PG-LDPC and Type I EG-LDPC Codes
- Parity-Check Matrix H defined by an incidence structure of points and lines in the projective plane PG(2,q)

Pseudoweight Spectrum Gap

- Pseudoweight Spectrum Gap $g(\mathbf{H})$
 - The difference between *d_{min}* and the minimum pseudoweight over the set of fractional (non-codeword) pseudocodewords
- Examine the Pseudoweight Spectrum Gap of Finite Geometries Codes
- P.O. Vontobel and R. Smarandache and N. Kiyavash and J. Teutsch and D. Vukobratovic: "On the Minimal Pseudocodewords of Codes from Finite Geometries", Proc. of the ISIT 2005.

Numerical Results for Type I PG-LDPC Codes

Pseudoweight Spectrum of PG(2,4) code

Pseudoweight Spectrum of 15x15 EG(2,4) code

Pseudoweight Spectrum of 9x15 EG(2,4) code

Pseudoweight Spectrum of 8x15 EG(2,4) code

Optimality Considerations

- Choosing a code C we choose d_{min}
 - Performance guarantees for ML decoding
- Choosing the parity-check matrix **H** we choose minimum pseudoweight
 - Performance guarantees for LP and BP decoding
- Problem: Find families of H that have large Pseudoweight Spectrum Gaps
- Fact: Adding redundant rows improves performance

Pseudoweight Spectrum Gap Characteristic of Code

- To define [*n*, *k*] binary linear code *C*:
 - $m \times n$ parity check matrix **H**
 - $\bullet\,$ spans the space orthogonal to ${\cal C}\,$

•
$$m \in M = \{n - k, \dots, 2^{n-k} - 1\}$$

- $g_{\mathcal{C}}(m) = \max_{\mathbf{H} \in \mathcal{H}_m(\mathcal{C})} g(\mathbf{H}), \qquad m \in M$
- \$\mathcal{H}_m(\mathcal{C})\$: set of all \$m \times n\$ parity check matrices spanning the space orthogonal to the \$\mathcal{C}\$.
- $g_{\mathcal{C}}(m)$: characteristic of the code \mathcal{C} .

Pseudoweight Spectrum Gap Characteristic of Code

• The Stopping Redundancy

$$\rho(\mathcal{C}) = \min\{m | g_{\mathcal{C}}(m) \ge 0\}$$
(10)

