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Finite-Length Analysis

Asymptotic Analysis
Density Evolution and approximations
Outputs capacity-approaching degree distributions

Finite-Length Analysis
Well developed in the BEC case

Stopping Sets
Pseudocodewords Theory

Promising direction in finite-length analysis
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Pseudocodewords of Tanner Graphs

Concept introduced by Wiberg
Pseudocodewords on Computation Trees
N. Wiberg:"Codes and Decoding on General Graphs", PhD
Thesis, Linkoping University, 1996.

Further Refined by Koetter and Vontobel
Pseudocodewords on Graph Covers
R. Koetter and P. O. Vontobel:"Graph covers and iterative
decoding of finite-length codes", Proc. of the 3rd intl. Conf
on Turbo Codes and Related Topics, 2003.
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ML Decoding as a Linear Program

Easy to convert ML decoding into:

x̂ML(y) = x̂ML(λ) = arg min
x∈CH(C)

n
∑

i=1

λi · xi (1)

CH(C): Convex Hull of set C

Log Likelihood Ratio: LLR(yi) = λi = ln
(

Pr [ yi | xi=0 ]
Pr [ yi | xi=1 ]

)

CH(C) is of exponential description complexity

Fails to give a practical ML decoder
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Fundamental Polytope

Use standard Relaxation Technique from LP theory:
Replace CH(C) with less complex polytope

Fundamental Polytope:
Each row [hi] of [H] defines local SPC code Ci

P(H) =

m
⋂

i

CH(Ci) (2)

If wH(hi) is bounded by a constant as n grows:
Valid for LDPC codes
Linear number of constraints with n
Practical but suboptimal decoder
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LP Decoding

LP Decoding:

x̂LP(y) = x̂LP(λ) = arg min
x∈P

n
∑

i=1

λi · xi (3)

LP solution is always a vertex of optimization domain
LP Pseudocodewords: set of vertices of P, V (P)

C ⊂ V (P)
F (P) = V (P)\C - Set of Fractional Solutions

J. Feldman and M.J. Wainwright and D.R. Karger:"Using
linear programming to decode binary linear codes", Trans.
on Inform. Theory, pp. 954-972, March 2005.
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BP vs LP decoding

LP decoder: Suboptimal decoder with a strong
connections with BP decoder

Equivalent with BP decoder on BEC
D. Vukobratovic:"On the equivalence of BP and LP decoding
on the BEC Channel", Proc. of the 4th Intl’. Workshop on
Optimal Codes and Related Topics, 2005.

On AWGN Channel:
Same characterization of the set of Pseudocodewords
Fundamental Polytope

Further references on BP and LP connections:
P. O. Vontobel and R. Koetter:"On the relationship between
linear-programming decoding and min-sum algorithm
decoding", Proc. of the ISITA, 2004.
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Fundamental Polytope and Fundamental Cone
Conic Hull of the Fundamental Polytope P

K (H) = {αx |α ≥ 0, x ∈ P} (4)

K( )H

0

P( )H

0

∀j ∈ J : ωj ≥ 0, (5)

∀i ∈ I, ∀j ∈ Ji :
∑

j ′∈Ji\{j}

ωj ′ ≥ ωj . (6)
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All-Zero Codeword LP Decoding Region

DLP
0 = {λ|λ · x ≥ 0, ∀x 6= 0, x ∈ V (P)} (7)

Convex Cone with apex in the origin

Most of the x∈ V (P) are redundant

Minimal Pseudocodewords M(P) ⊆ V (P) describes DLP
0

DLP
0 = {λ|λ · x ≥ 0, ∀x 6= 0, x ∈ M(P)} (8)

The Fundamental Cone and the All-Zero Codeword
Decoding Region are Dual Cones
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The Dual Cone Relationship

0

l=1

x
PC

lx
PC

= 0

P( )H
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Pseudo-weight of the pseudocodewords

Generalization of the Hamming weight

AWGN Pseudo-weight

ωAWGNC
P (x) =

‖ x ‖2
1

‖ x ‖2
2

(9)

Distance between plane {γ ∈ R
n | yγτ = 0} and point

+1 = (1, 1, . . . , 1)

Inversely proportional to ∠(x , 1)

We are interested in the Minimal Pseudocodeword Weight
Spectrum
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Finite Geometries Codes

Experimentally observed very good performance with BP
decoding

Y. Kou and S. Lin and M.P.C. Fossorier:"Low-Density
Parity-Check Codes Based on Finite Geometries: A
Rediscovery and New Results", Trans. on Inform. Theory,
pp. 2711-2736, Nov 2001.

Families of Type I PG-LDPC and Type I EG-LDPC Codes

Parity-Check Matrix H defined by an incidence structure of
points and lines in the projective plane PG(2,q)
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Pseudoweight Spectrum Gap

Pseudoweight Spectrum Gap g(H)

The difference between dmin and the minimum
pseudoweight over the set of fractional (non-codeword)
pseudocodewords

Examine the Pseudoweight Spectrum Gap of Finite
Geometries Codes

P.O. Vontobel and R. Smarandache and N. Kiyavash and J.
Teutsch and D. Vukobratovic: "On the Minimal
Pseudocodewords of Codes from Finite Geometries",
Proc. of the ISIT 2005.
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Numerical Results for Type I PG-LDPC Codes

PG(2,2) code: CPG(2,2) [7,3,4]-code
g(HPG(2,2))=6.25-4=2.25

PG(2,4) code: CPG(2,4) [21,11,6]-code
g(HPG(2,4))=9.8-6=3.8

PG(2,8 code): CPG(2,8) [73,45,10]-code
g(HPG(2,8)) ≈ 6
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Pseudoweight Spectrum of PG(2,4) code



Pseudoweight Spectrum of 15x15 EG(2,4) code



Pseudoweight Spectrum of 9x15 EG(2,4) code



Pseudoweight Spectrum of 8x15 EG(2,4) code
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Optimality Considerations

Choosing a code C we choose dmin

Performance guarantees for ML decoding

Choosing the parity-check matrix H we choose minimum
pseudoweight

Performance guarantees for LP and BP decoding

Problem: Find families of H that have large Pseudoweight
Spectrum Gaps

Fact: Adding redundant rows improves performance
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Pseudoweight Spectrum Gap Characteristic of Code

To define [n, k ] binary linear code C:
m × n parity check matrix H
spans the space orthogonal to C
m ∈ M = {n − k , . . . , 2n−k − 1}

gC(m) = maxH∈Hm(C) g(H), m ∈ M

Hm(C): set of all m × n parity check matrices spanning the
space orthogonal to the C.

gC(m): characteristic of the code C.
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Pseudoweight Spectrum Gap Characteristic of Code

The Stopping Redundancy

ρ(C) = min{m|gC(m) ≥ 0} (10)

g (m)C

r(C)

mn-k 2 -1
n  -kn-k+1 …


