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Motivation

MIMO systems achieve high rate gains.

Multiple antennas = multiple receiver chains.

Expensive and power consuming receiver circuitry (mixers,
frequency synthesis, PLL’s, linear amplifiers etc.).

Applications like sensor networks require very energy-efficient and
cheap solutions in order to maximize lifetime.

Amplitude and phase detection are known as low-cost/low-power
alternatives to receiver design.

We explore achievable rates of coherent MIMO systems that use
amplitude or phase detection receivers.
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Channel State Information

We assume that channel knowledge is available at the receiver.

In a Time Division Duplex system, CSI can be signaled from the more
complex access point to the node.

The node could employ a linear receiver for channel estimation and
switch to a nonlinear receiver for receiving data.

For phase detection, it is possible to estimate the channel amplitude
from the variation of the phase samples [Althaus, Wittneben].
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System Model

yrs
g(•)

g(•)
g(•)

x
w

...
...

...

(See flip board!)

Linear model: r = Hs + w.

The channel matrix H has i.i.d. CN (0, 1) entries.

Transmit signal — s ∼ CN (0, σ2
sINT

).

AWG noise — w ∼ CN (0, σ2
wINR

).

The nonlinear operator g extracts either the phase or the amplitude of
r.
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Reference Model - Linear MIMO

Capacity of linear MIMO System [Telatar, Foschini-Gans]

Clin = EH

[

log det

(

INR
+

SNR

NT
HHH

)]

.

Average SNR per receive antenna

SNR =
tr(ssH)

σ2
w

=
NTσ2

s

σ2
w

.

Capacity scales with Nmin = min(NT, NR) at high SNR

Clin ≃ Nmin log
SNR

NT
+
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∑

i=1

E
[

log λ2
i

]

.
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Evaluating Nonlinear MIMO Mutual Information (1)

Mutual Information given the channel realization H

I(s; y, H) = EH[I(s; y|H = H)].

Chain rule for Mutual Information

I(s, x; y|H=H)= I(x; y|H=H) + I(s; y|x, H=H),

I(s, x; y|H=H)= I(s; y|H=H) + I(x; y|s, H=H).

Since s → x → y, we have that I(s; y|x, H=H) = 0.
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Evaluating Nonlinear MIMO Mutual Information (2)

Meanwhile, since x = Hs

I(x; y|s, H =H) = h(y|s, H =H) − h(y|s, x, H =H)

= h(y|s, x, H =H) − h(y|s, x, H =H)

= 0.

Hence

I(s; y|H = H) = I(x; y|H = H).

and

I(s; y, H) = EH[I(x; y|H = H)].
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Evaluating I(x; y|H = H)

Definition

I(x; y) = h(y) − h(y|x)

= −
∫

p(y) log(p(y))dy

+

∫∫

p(x)p(y|x) log(p(y|x)dydx.

Since g(•) acts element wise

p(y|x) =

NR
∏

i=1

p(yi|xi).
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h(y|x) — conditional pdf p(yi|xi) (1)

The nonlinear operator for amplitude/phase detection

yi,ampl. = gampl.(ri) =
√

ℜ(ri)2 + ℑ(ri)2,

yi,phase = gphase(ri) = arg(ri) = tan−1

(ℑ(ri)

ℜ(ri)

)

.

Given xi, ri ∼ CN (xi, σ
2
w), and the norm of r is Rice distributed

pampl.(yi|xi) =
2yi

σ2
w

e
−

y2
i
+|xi|

2

σ2
w I0

(

2yi|xi|
σ2

w

)

.

(Use approximation of I0(z) for high z.)
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h(y|x) — conditional pdf p(yi|xi) (2)

The phase has a more involved distribution

pphase(∆φi|xi) =
e−ρi

σ2
w

+

√

ρi

4π
e−ρi sin2 ∆φi

· cos ∆φi erfc(−√
ρi cos ∆φi),

where ρi = |xi|
2

σ2
w

and ∆φi = yi,phase − arg(xi) ∈ [0, 2π).

We estimate the entropy h(y|x) with Monte Carlo (MC)
integration

h(y|x) = −
∫∫

p(x, y) log(p(y|x))dydx

= −Ep(x,y)[log(p(y|x))] ≃ − 1

N

N
∑

i=1

log(p(yi|xi)),

where (xi, yi) ∼ p(x, y) and we average over N samples.
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h(y) — distribution of y, NR = 1

In the MISO case r =
NT
∑

i=1
h1isi + w, and for Gaussian input,

r ∼ CN (0, σ2
r ), σ2

r =

NT
∑

i=1

|h1i|2σ2
s + σ2

w.

The norm of r is Rayleigh distributed and the entropy is

h(r)[bits] =

(

1 + ln

√

σ2
r

4
+

γ

2

)

log2 e

The phase of r is uniform distributed in [0, 2π)

h(r)[bits] = log2(2π)
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h(y) — distribution of y, NR > 1 (1)

When NR > 1, the amplitude is a correlated multivariate Rayleigh

distribution [Mallik, Miller]. For NR = 2, NR = 3

p(y1, y2) = 4y1y2 det(S)e−(S11y2
1
+S22y2

2
)I0(2|S12|y1y2),

p(y1, y2, y3) = 8y1y2y3 det(S)e−(S11y2
1
+S22y2

2
+S33y2

3
)

∞
∑

m=0

[εm(−1)mIm(2|S12|y1y2)Im(2|S23|y2y3)

·Im(2|S31|y3y1) cos(m(χ12 + χ23 + χ31))] ,

where S = (E[rrH])−1 = (σ2
sHHH + σ2

wI)−1 and χij = arg(Sij).
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h(y) — distribution of y, NR > 1 (2)

When NR > 1, the phase is a correlated multivariate uniform

distribution (uniform marginals). For NR = 2

p(y1, y2) =
det(S)

8π2S11S22

[

1

1 − λ2
− λ cos−1 λ

(1 − λ2)3/2

]

and

λ =
S12√
S11S22

cos(y1 − y2 − χ12).

In both cases we calculate the entropy with MC integration.
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Entropy of y in the general case

In all other cases we estimate the distribution of y numerically

p(yi) =

∫

p(x)p(yi|x)dx ≃ 1

M

M
∑

j=1

p(yi|xj)

where xj ∼ p(x). The entropy of y is given by

h(y) = −
∫

p(y) log(p(y))dy ≃ − 1

N

N
∑

i=1

log(p(yi))

where yi ∼ p(y).

This method is rather cumbersome with case specific peculiarities
(use importance sampling in specific cases).
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Example: Amplitude detection, 20 dB SNR, y = 0.5

pdf: p(y = 0.5|x) for different x (x is complex valued).

If we create samples for x Gaussian distributed, we miss the
“important” area.

Instead, we use an auxiliary function that captures the ring around
y = 0.5.
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SISO System
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MISO System
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SIMO System
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MIMO N × N system
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MIMO 2 × N system
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Conclusions

The performance of nonlinear receivers is clearly inferior to linear
reception.

Achievable rates of nonlinear receiver behave in a similar way as linear
receivers (SIMO, MISO, etc.).

Additional receive antennas improve the performance of nonlinear
receivers (resolve more dimensions)!

It may be cheaper to employ more nonlinear receivers than linear ones.

Psaltopoulos et al. (ETH Zurich) Nonlinear MIMO – Achievable Rates Aveiro, 2006 22 / 23



Conclusions

The performance of nonlinear receivers is clearly inferior to linear
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Achievable rates of nonlinear receiver behave in a similar way as linear
receivers (SIMO, MISO, etc.).

Additional receive antennas improve the performance of nonlinear
receivers (resolve more dimensions)!

It may be cheaper to employ more nonlinear receivers than linear ones.

Thank you for your attention!
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Appendix

(M,N) MIMO Degrees
of free-
dom
Nmin

Real de-
grees of
freedom
2Nmin

Slope
of linear
detection

Slope of
nonlinear
detection

Real de-
grees of
freedom
2Nmin - 1

(1,1) 1 2 2 1 1

(1,2),(2,1),. . . 1 2 2 1 1

(2,2) 2 4 4 2 3

(2,3) 2 4 4 ∼ 2.4 3

(2,4) 2 4 4 ∼ 2.8 3
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