UWB based on Pulsed Multiband

Henry Silalahi and Yonas Djamianto

February 16, 2004

Overview:

- UWB MULTIBAND
- SYSTEM MODEL
- SIMULATION PARAMETERS AND ASSUMPTIONS
- RESULTS
- CONCLUSIONS
- FUTURE WORKS

Ultra Wideband (UWB)

- UWB is a wireless technology for transmitting digital data at very high rates over a wide frequency with very low power
- UWB is not a new technology
- February 14, 2002, the FCC defined UWB as any signals that have -10 dB bandwidth at least 500 MHz in unlicensed 3.1 10.6 GHz bandwidth frequency and should meet the following spectrum mask

UWB spectral mask for indoor communications system according to FCC

UWB underlay

Wide bandwidth means high channel capacity, high data rate.
Shannon's capacity limit equation:

$$C = BW * log_2(1 + SNR)$$

• Limited power means limited distance (< 10 m)

UWB is suitable for high data rate communications system in a short range

UWB Singleband and Multiband

Why UWB Multiband?

- Adaptive band selection :
 - UWB coexistence with IEEE 802.11a (WLAN) is improved
 - Compliance with worldwide regulation
- Flexible in data rate

UWB system based on pulsed multiband in a single user link with data rate 100 Mbps.

SYSTEM MODEL

- UWB system based on pulsed multiband
- IEEE UWB channel model
- Coherent receivers
- Channel estimation

Bandplan

UWB Frequency [GHz]

• Ease of implementation

Pulse

- Half-sine with duration 4 ns
- ullet -10 dB bandwidth pprox 500 MHz

Data is transmitted sequentially in each band

Figure 1: In time domain

Figure 2: In frequency domain

- Pulse Repetition Frequency (PRF) = 6*4ns = 24ns
- Pulse rate = $6*\frac{1}{6*4ns} = 250Mpps$
- ullet Repetition code 2 pulses/1 bit, Bit rate = 125Mbps

IEEE UWB Channel Model

- Based on Saleh-Valenzuela where multipath components arrive in clusters
- ullet Taps has log-normal fading and phase is $\pm~1$ (equally probable)
- ullet Log-normal shadowing with $\sigma=3$ dB and $\mu=0$ dB, with expected energy is 1.2695 or +1 dB
- Four different channels models:

CM1: LOS 0-4 m CM3: NLOS 4-10 m

CM2: NLOS 0-4 m CM4: NLOS RMS delay spread 25 ns

Interarrival time for clusters and rays follow exponentional distribution

Coherent Receivers

- Coherent receivers need to estimate channel phase, amplitude and delay
- Selective Rake with MRC and pulse matched filter
 - Chip-spaced Rake receiver (pulse or chip rate)
 - Fractional-spaced Rake receiver (Nyquist rate)

Rake receiver

Figure 5: System Model

Channel Estimation

- Sliding Window
- Maximum-Likelihood criterion or Least Squares (ML)
- Iterative Channel Estimation

SIMULATION PARAMETERS AND ASSUMPTIONS

- Uncoded data rate is in order of 100 Mbps
- Channel is constant during transmission of 1 packet
- Number of data bit in 1 packet is 2400 bits
- 6 bands 500 MHz from 3.1 to 6.1 GHz
- Sampling rate in the transmitter is 20 GHz
- Half sine pulse with duration 4 ns and -10 dB bandwidth pprox 500 MHz
- BPSK modulation
- Spread the bits in different bands and transmit it sequentially
- Repetition gain 3 dB or 2 pulses per 1 bit
- Long code system with ML sequence period 255
- Perfect synchronization
- Effect from equipment has been neglected

Comparisons Rake 1 finger between SW, ML and ICE SW channel estimation

Comparisons Rake 2 finger between SW, ML and ICE SW channel estimation

Result SW channel estimation

CONCLUSIONS

- Performances of FS and CS Rake are comparable, therefore CS is preferable due to its lower sampling rate
- For Rake 1 finger, ML and SW show the same performance and ICE only gives a small improvement with the cost longer processing time
- Diversity gain is attainable in CM2, CM3 and CM4
- ML estimation needs to know the maximum excess delay time of the channel to determine the optimum sampling point
- Pulse separation gives improvement in CM3 and CM4 but the bit rate is lower
- System proposal: UWB pulsed multiband using sliding window estimation method with chip spaced Rake 1 for CM1 and 2 fingers for CM2, CM3 and CM4