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Abstract— Ultra-Wideband (UWB) is an emerging technol-
ogy for short-range wireless communications. Due to the high
bandwidth of UWB signals, accurate ranging and positioning
is possible, which is one of many reasons why UWB is a
candidate physical layer for another emerging research area;
that of wireless sensor networks (WSNs). In this work, we argue
that the ranging algorithm design should be made with the char-
acteristics of the positioning algorithm in mind. In considering
ranging and positioning in parallel, we are able to construct an
estimator of range that is tailored to the positioning algorithm,
thereby achieving robustness to non-line-of-sight (NLOS) effects,
reasonable overall complexity, and good performance in terms
of positioning error. The analysis and simulations in this work
are based on the channel models adopted by the IEEE 802.15.4a
working group, and highlight the benefits and drawbacks of the
proposed approach.

I. INTRODUCTION

In a wireless sensor network (WSN), information about the
position of individual nodes, either absolute or in relation to
other nodes in the network, is often crucial for a successful
fulfilment of the network purpose. One of the candidate phys-
ical layers for this type of network is ultra-wideband impulse
radio (UWB-IR) [1], that potentially combine low power
consumption, immunity to multipath fading, low probability
of intercept, and, supposedly, low cost. Due to the large
bandwidth employed by UWB-IR, accurate propagation delay
based ranging between nodes is feasible [2]. Such distance
estimates may then be used to estimate the positions of nodes
in the network. However, many obstacles need to be overcome
before a successful WSN positioning system can be realized;
(a) Most WSNs will be asynchronous, meaning that there
is no available global time reference accurate enough for
direct propagation delay distance estimation. (b) The channel
statistics must, in most cases, be assumed unknown at the
receiver. (c) There are tight constraints on energy consumption,
cost and size, limiting the allowable complexity. (d) Devices
will most likely not be homogenous, i.e., different types of
receiver front-ends will be present in the network. (e) A given
percentage of channels will be non-line-of-sight (NLOS),
adding a considerable positive bias to most distance estimators.

An extensive literature exist on the topic of ranging and
positioning in UWB systems. In [3], Lee and Scholtz describe
a correlator-based range estimator of reasonable complexity.

1This work was supported in part by European Union FP-6 Project
NEWCOM, Contract IST NoE 507325, and in part by Vinnova project no.
2003-02803.

The same authors also propose an estimator based on a max-
imum likelihood (ML) approach [4]. This ML-type estimator
provides good performance, but at the expense of considerable
complexity. In [5], a comparative study of more advanced
algorithms for determining time of arrival of UWB signals for
different receiver architectures was recently presented. How-
ever, the work in [5] differs from the work presented here in
several aspects, the assumption of prior information about the
channel being the most significant. For an overview of current
work, including both ranging and positioning algorithms, the
reader is referred to [2], and references cited therein.

In this paper, we argue that improvements in both po-
sitioning accuracy and robustness are possible if the error
characteristics of the ranging scheme can be adapted and
matched to the characteristics of the positioning scheme.
Towards this end, a novel ranging algorithm, that operates
without a global time reference and assumes no prior channel
knowledge is designed. The algorithm does not output a
single distance estimate, as most proposed algorithms in the
literature do, but several distance estimates with associated
likelihoods. Using these ”soft” distance estimates, we are able
to tune the error distribution to fit with a given positioning
algorithm. The positioning algorithm used as an example
here is based on projections onto convex sets (POCS) [6], a
method that is remarkably resilient to arbitrarily large positive
errors in distance estimates, but suffers if large negative errors
in distance estimates occur. Hence, the distance estimator
is tuned to output a minimum of estimates with negative
errors, at the expense of intermittent large positive errors and
higher variance. Other positioning algorithms, such as least-
squares approaches, does not have this peculiarity, and thus
the distance estimator is tuned differently.

The overall organization of this work is as follows: Sec-
tion II describes the network scenario and the network nodes.
Section III is dedicated to the derivation of the ranging algo-
rithm, while Sec. IV briefly presents the localization algorithm.
Finally, a short evaluation in terms of numerical results is given
in Sec. V, and the paper is concluded in Sec. VI.

II. SYSTEM MODEL

The network under consideration is an asynchronous UWB-
IR sensor network composed of a fixed number M of sta-
tic nodes distributed over a delimited area, and with two-
dimensional coordinates {xi}M

i=1. We assume the position of a
subset of nodes (sometimes referred to as beacons) are known



a-priori, but a generalization of the proposed system to a
network without beacons is straight forward. The WSN lacks a
global clock reference exact enough for one-way ranging, and
nodes have no a-priori channel state information. The packet
transmission in the network is totally uncoordinated, and each
transmitter uses a node-specific and globally known preamble
sequence for medium access. An alternative not considered
here would be the use of a common preamble, perhaps with
the addition of coordinated transmissions. This would alter
interference conditions somewhat, but not change the main
conclusions. Each transmitted packet is time-stamped with
respect to the local clock at the transmitting node, and all, or a
subset of nodes cooperatively estimate the unknown positions.
It is assumed that the ranging and position estimation is
repeated periodically, and we will only consider the first such
period, i.e., network start-up. Of course, as time evolves,
position estimates may be refined and tracked if nodes are
moving, but this aspect is not considered here.

A. UWB signal model

The baseband signal sj(t), generated by the jth node,
comprises a preamble of length LPR frames and a data
payload of LD frames, i.e.,

sj(t) =
LP R−1∑

k=0

aj,kw(t − kTf − cj,kTc)

+
LP R+LD−1∑

k=LP R

aj,kw(t − kTf − cj,kTc),

where w(t) is a root-raised-cosine pulse waveform, Tf is
the UWB-IR frame time [1], and Tc is the chip time. Each
frame consists of an integer number Nf = Tf/Tc of pulse
slots, and each pulse is amplitude modulated (PAM) with
polarity ±1. The PAM symbol sequences {aj,k}LPR−1

k=0 , and
{aj,k}LP R+LD−1

k=LPR
for preamble and data, respectively, are

chosen randomly in this work. The time-hopping pseudo-noise
(PN) sequences of node j, for preamble and data, respectively,
is represented by {cj,k}LPR−1

k=0 , and {cj,k}LP R+LD−1
k=LPR

. As men-
tioned above, the preamble sequences can in some scenarios be
assumed equal for all j. The pulse has a −3 dB bandwidth of
494 MHz, the roll-off factor is 0.25, and the system under con-
sideration operates around an RF carrier at f0 = 3.952 GHz.
This choice is due to the recent IEEE 802.15.4a standardiza-
tion trends, in which the mandatory signal −3 dB bandwidth is
494 MHz and the UWB-IR transmission is not carrierless but
centered around one of several equispaced carriers. We observe
that the expected distance resolution of the system turns out
to be about 0.6 m. All simulations are made at baseband
and in discrete time, using a complex baseband-equivalent
channel model adopted by the IEEE 802.15.4a working group.
This channel model is a low-pass filtered tapped delay-line,
where signal components arrive at the receiver in independent
clusters. After passing the channel, the signal is affected by
complex additive white Gaussian noise (CAWGN) with zero
mean and unknown variance. The modeling and characteristics
of the employed channel model are described in detail in [7].

B. Receiver architectures

The receiver architecture can either be built on a matched
filter or an energy detector front-end, both sampled at fs =
1/Tc Hz. The receiver detects the presence of a given preamble
sequence through correlating the sampled front-end output
with the known PN sequences. The output of the correlator
is squared, and the location in time of the strongest peak is
denoted T0.

It should be noted that the sampling instants are controlled
by the data receiver, and not by the ranging algorithm. Thus,
the ranging algorithm assumes random chip-spaced sampling.
Also, since the algorithms proposed in this work operate
only on the chip-spaced correlator output samples, only minor
adjustments is needed if the front-end of the receiver is
changed.

III. RANGING ALGORITHM

The ranging algorithm operates on a sequence of squared
correlator outputs. Henceforth, a squared correlator sample at
discrete time-offset k will be denoted yk. Here, we assume
a matched filter front-end, but similar derivations result if an
energy detector front-end is assumed.

First, an estimate of the variance σ2
n of the CAWGN in

the correlator output is obtained. Under the assumption that
a majority of correlator outputs contain only noise (sparse
traffic), we have σ̂2

n = 1
N

∑N
k=1 yk, where N is the correlator

total output length. We assume all interference is included in
the CAWGN. Thus, if there is no signal-component at offset
k, yk follows an exponential distribution parameterized by σ2

n.
Therefore, using σ̂2

n, a fixed probability of false alarm PFA,
and prior knowledge about the preamble PN-sequence auto-
correlation function ΨPN, a signal detection threshold given
by θ = max(−σ̂2

Ψn
ln(PFA), ρ yT0/Tc

), can be derived, where
yT0/Tc

is the peak correlator output (at T0), and the factor ρ =
maxn�=0

ΨPN(n)
ΨPN(0) is the ratio between the second strongest value

of the known PN preamble sequence autocorrelation function
ΨPN and its maximum value; this lower bound on θ limits
false detections due to imperfections in the PN sequences,
which mainly occur at high signal-to-interference-and-noise
ratios (SINR). For low PFA, squared correlator samples in {yk}
exceeding θ are likely to contain signal in addition to noise,
and will henceforth be denoted {si}Nτ

i=1, with corresponding
delays {τi}Nτ

i=1, Nτ denoting the number of detected paths,
{si}Nτ

i=1 ⊆ {yk}N
k=1, and we assume Nτ � N .

The search for the first path is now confined to a window of
tunable duration preceding T0. The motivation for this being
that any peaks following the strongest peak is unlikely to cor-
respond to the line-of-sight (LOS) signal path, and processing
them would add considerably to the complexity. The window
length used here is given by TRW = max(λτ̂d, τmin) seconds,
where λ is a tuning parameter, τmin is for avoiding too short
windows, and τ̂d is an estimate of the channel RMS delay-
spread. This estimate is given by

τ̂d =

√
1

Nτsi

∑
i

si(τi − 〈τi〉)2,



where 〈τi〉 = (Nτsi)−1
∑

i siτi, and si denotes the average
of {si} taken over all i. The windowed sample-set is therefore
[y(�(T0−TRW)/Tc�), . . . , y(T0/Tc)], where �a� denotes the small-
est integer greater than or equal to a.

Now, for each yk in the search window, we wish to assign
an approximate probability ln(yk) that the sample corresponds
to noise only, and also an approximate probability ls(yk) that
there is a signal path at the given offset. As stated above, under
the hypothesis H0 that there is only noise, the exponential
PDF is a justifiable measure of noise only probability. Thus
ln(yk) = (1/σ̂2

n) exp(−yk/σ̂2
n).

Since we, in order to keep derivations general, assume
no prior channel information whatsoever, it is difficult to
accurately model yk under the hypothesis H1 that a signal-
path is present. However, simulation results show that even
a very coarse approximation of the distribution of the yk’s
under H1 gives better end results than if only ln(yk) is used.
Hence, we assume that the channel response has a rectangular
power-delay profile locally around T0, caused by received
signal components that are uncorrelated and approximately
follow a complex Gaussian distribution of mean μ and variance
σ2

c . With this crude approximation, yk is modelled by a non-
central χ2

2 distribution with unknown non-centrality parameter
a2 = 2μ2, and underlying Gaussian variance σ2

s = σ2
c + σ2

n.
Thus,

ls(yk) = p(yk|H1) =
1

2σ2
s

exp
(
−yk + a2

2σ2
s

)
I0

(√
a2 yk

σ2
s

)
,

(1)
where I0 is the modified Bessel function of zero
order. Parameters μ2 and σ2

c can be estimated,
e.g., using a method of moments approach [8]

as μ̂2 = (1/2)
√

si
2 − (1/Nτ )

∑Nτ

i=1(si − si)2 and
σ̂2

c = (1/2)max((si − 2μ̂2), 0). It should be noted that, when
estimating μ2 and σ2

c , the number of detected paths can be
limited to the strongest Nmax detected peaks, which will
lower complexity at low SINR. Note also that, when we have
a single detected peak, i.e., Nτ = 1, (1) reduces to a χ2

2

distribution with a2 = s1 and σ2
s = σ̂2

n.
Now, at each offset k, the approximate signal and noise

probabilities are normalized, giving a probability of noise only
as p̂n(yk) = ln(yk)/(ln(yk) + ls(yk)), that now considers
both noise power and magnitude of detected paths. Using
p̂n, we now wish to find a measure l of the approximate
probability that each correlator output sample k represents
the first signal path, i.e., the LOS component. Intuitively; (a)
the LOS correlator peak is preceded by a number of noise-
induced peaks, (b) there is of course signal content in the
peak, and (c) it will also likely be followed by other signal
induced peaks, due to the clustered nature of the channel
model. Our proposed measure is therefore given by l(k) =
(1 − p̂n(yk)) p̂fw(k) p̂bw(k), where

p̂fw(k) =
∏

l∈wfw

p̂n(yl), and p̂bw(k) = 1 −
∏

l∈wbw

p̂n(yl),

and indices k = {�(T0 − TRW)/Tc�, . . . , T0/Tc}, wfw = {k −

�TRW/Tc�, . . . , k−1}, and wbw = {k+1, . . . , k+�TRW/Tc�}.
Thus, p̂fw(k) is an approximation of the probability that no
signal paths are present TRW seconds before sample k and
p̂bw(k) is an approximation of the probability that at least one
signal path is present TRW seconds after sample k. The addition
of factor p̂bw penalizes spurious single correlator peaks, that
are not very probable in the considered channel model, but
could very well be generated by a combination of interference
and noise. An estimated LOS probability vector can now be
formed at node i, by approximating LOS probabilities l for all
correlator output samples in the search window, normalizing
to a unit sum, and stacking the outcome in a vector p̂i.

All correlator peak delays τ j,i =
[
τj,i,1, . . . , τj,i,Nτ,j

]
,

detected at node i when correlating against the PN sequence
from node j, corresponds to estimates of distance, albeit biased
by unknown transmission and reception times with respect
to a global clock reference. This bias may be cancelled by
averaging two corresponding distance estimates. The reason
this cancellation is possible is the sign-change in unknown
clock-offsets Δ on the forward and reverse links [6], i.e.,
τi,j = ‖xi−xj‖/c+Δi−Δj and τj,i = ‖xi−xj‖/c+Δj−Δi,
where c is the electromagnetic propagation velocity. Thus, the
final distance estimate between nodes i and j is given by
the vector d̂i,j = (1Nτ,i

⊗ τ i,j + τ j,i ⊗ 1Nτ,j
)c/2, where

⊗ denotes the Kronecker product and 1N is the N -length all-
ones vector. Now, since some correlator offsets will be more
likely than others of corresponding to the LOS component,
some elements in d̂i,j will be more likely to correspond to the
averaging of two LOS components than other elements. Since
d̂i,j can be viewed as a sum of two random variables, it is in
turn a random variable with a PDF given by the convolution
of the two PDFs of the summand random variables. Therefore,
after sorting and removing duplicate distance estimates from
d̂i,j , we can approximate the vector describing the probability
that each element in d̂i,j is the average of two LOS correlator
offsets by p̂i,j = p̂i∗p̂j , where ∗ denotes discrete convolution.

Given d̂i,j and p̂i,j , a variety of estimators may be chosen
from. For instance

d̂ l
i,j = p̂T

i,jd̂i,j , (2)

d̂m
i,j = {d̂i,j,k : k = arg max

q
p̂i,j,q}, (3)

d̂ th
i,j(t) = min

k

{
d̂i,j,k :

∑k
n=1 p̂i,j,n ≥ t

}
. (4)

Of course, (2) is similar to the maximum a-posteriori estimator,
while (3) is influenced by the maximum likelihood estimator.
Both (2) and (3) are suited for positioning algorithms were
negative and positive errors have the same effect, and a small
error variance is sought. A robust algorithm where outliers is
not a major problem could perhaps benefit from (3), while (2)
would present fewer outliers. Estimator (4) is a thresholded
estimator, aimed at limiting the probability of suffering a
negative error. This type of estimator is especially suited for
positioning algorithms based on POCS, described below. Some
algorithms, for instance based on multiple-hypothesis tracking
(MHT) or particle filter tracking, may even prefer the entire



d̂i,j and p̂i,j vectors as input. It should be noted that the
ranging algorithm does not control the chip-spaced sampling
instants. Therefore, due to sampling mismatch with respect to
the LOS component, there will be an irreducible error floor in
all distance estimators.

Based on p̂i,j , a measure of uncertainty or estimate of
variance in the distance estimate is obtained. We call this
measure the spread, si,j , of the distance estimate vector
between nodes i and j, and define it as

si,j =
∑

n

p̂i,j,n(d̂i,j,n − d̂i,j)2, (5)

where d̂i,j can be any of the proposed estimators in (2)-(4).
The spread is lower bounded by 0, in which case only one
estimate exists, with p̂i,j,1 = 1. As the number of likely LOS
paths grow, the spread increases.

IV. POSITIONING ALGORITHM

By design, the thresholded distance estimator in (4) aims for
a positive bias, and has not been optimized for low variance.
Instead, the design seeks to minimize the amount of large
negative errors. The reason for this somewhat unconventional
distance estimator is the recent availability of a positioning
algorithm that is insensitive to intermittent but large positive
distance errors. The positioning algorithm is based on the
method of projections onto convex sets (POCS) [9]. The use
of POCS for positioning in wireless sensor networks was, to
the best of our knowledge, first proposed by Hero and Blatt
in [10], and later extended in [6] to also include positioning
of sensors outside the beacon perimeter. Below, due to space
limitation, we only briefly introduce the POCS positioning
algorithms. The reader is instead referred to [6], [9], [10] and
references cited therein, for a more in-depth description and
analysis of the positioning algorithm.

A. Projection onto Convex sets

The main difference between POCS and classical gradient-
based approaches to positioning is that POCS does not operate
on a global objective function, but instead sequentially projects
a point in the plane onto convex sets that are formed from
range estimates. Thus, POCS is not sensitive to objective
function local minima, and, depending on the shape of the
convex sets used, can also be made robust to intermittent but
large positive errors in distance estimates. For instance, convex
discs will only be inflated by a positive bias, and therefore
not affect POCS iterations [6]. POCS is also easily distributed
between nodes in the network. Thus, no central control or
NLOS estimation procedure is needed.

The POCS method for distance estimates [9, ch. 5] is:
1. initialization x0 is arbitrary.
2. xν+1 = xν + λν

[PDι(ν)(x
ν) − xν

]
,

where {λν}∞ν=0 are relaxation parameters defined in, e.g.,
[6], PDi

(·) is the projection function onto the ith convex
set Di, and ι(ν) = ν mod C, where C denotes the
number of available convex sets.

In this work, two flavors of POCS have been used; circular
and hybrid, both described in more detail in [6].

V. NUMERICAL RESULTS

All simulations have been carried out using the channel
models for IEEE 802.15 LDR (Low Data Rate) systems [7].
The chosen channel models are CM1 and CM2, corresponding
to a residential LOS and NLOS channel respectively. The
network is composed of beacons and sensors equipped with
matched filter front-ends (Sec. II-B). Each node uses a pre-
defined transmission power of −14.3 dBm. For each link, a
channel realization was drawn from CM1 with probability
PLOS, and from CM2 with probability 1 − PLOS. For LOS
channel realizations, the path-loss exponent γLOS = 2, while
for NLOS realizations γNLOS = 3. The reference path-loss was
34 dB at d0 = 1 m. The variance of CAWGN was computed
from a receiver noise figure of 7 dB. All nodes transmit
(uncoordinated) one packet containing their unique preamble,
thereby enabling ranging, but also generating interference. The
physical layer tuning parameters were empirically chosen as
λ = 2, Nmax = 10, and τmin = 6Tc. The POCS algorithms
were run for a maximum of 40 iterations or until convergence.

A. Ranging

Four beacons were positioned at the corners of a square
office-space with side 10 m, and one sensor was located in
the center of the space. There were no blocked channels, i.e.,
PLOS = 1.0. In Fig. 1, the cumulative-density-function (CDF)
of the distance estimation error is plotted for preamble lengths
of LPR = 16 and LPR = 32. The simulations were repeated
500 times, each with new noise and channel realizations.
For comparison, the low-complexity estimator proposed in [3]
was also implemented (henceforth denoted the comparison
estimator), using the same search window as the proposed
algorithm and a threshold optimized for the channel model
under consideration. For the noise characteristics and set-up in
this simulation, it was noted that estimators in (2) and (3) had
very similar error CDFs, and therefore only (3) is plotted. The
curve ”jaggedness” is due to the discrete-time model of the
system. We note that the estimator in (3) suffers from negative
errors. This is due to the many noise and interference induced
correlator peaks of relatively high amplitude preceding the
peak at T0, that are assigned non-zero probabilities, causing a
large spread that in turn indicates bad quality. The comparison
estimator is affected similarly, although there is no quality
indicator here. Thus, at low SINR, neither of these estimators
can be considered very appropriate for POCS. The thresholded
estimator in (4) on the other hand, has a tendency to reject
negative errors, trading them for larger positive errors. We
also note that there is a considerable outage, especially for
LPR = 16, that occurs when one or both nodes on a link fail
to detect the presence of a preamble, or when the resulting
distance estimate is negative. If SINR is increased, it is seen
that the estimators start to converge, and the outage decreases.
At high SINR, i.e., large coding gains (LPR ≈ 128 for this
scenario), estimators (2)-(4), and the comparison estimator
show similar CDFs. Errors are then mainly caused by the
random chip-spaced sampling (between −0.3 m and +0.3 m).
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B. Positioning

Eight beacons and one sensor were randomly placed over a
square office space with side 10 m. An additional sensor was
placed at the center of the space. The thresholded distance
estimator in (4), with a threshold of t = 0.95, was used and
positions were estimated using the POCS algorithms described
in Sec. IV. The probability of a LOS channel realization was
PLOS = 0.75, and a preamble length of LPR = 32 was used.
The simulations were repeated 500 times, each with new node
layout, noise and channel realizations. The results are plotted
in Fig. 2. For comparison, a randomly initialized weighted
least-squares (WLS) algorithm, proposed for instance in [2]
was implemented. The WLS implementation assumed perfect
NLOS detection and discarding in one case, and was totally
naive to NLOS in the other. A number of NLOS detection
algorithms have been proposed in the literature, but none of
them is perfect, and so the idea of an NLOS-aware WLS
approach is fairly optimistic. The ranging input to both WLS
approaches was the estimator in (3) weighted by (5). Using
the comparison estimator as input significantly decreased
performance in all scenarios where SINR was not high.

The resilience of POCS, especially circular POCS with
the centered sensor position, to positive errors induced for
instance by NLOS effects is clear. It is also seen that the WLS
approach, despite perfect NLOS channel detection, suffers
from convergence in local minima [10]. The NLOS-naive WLS
of course suffers from considerable performance degradation.
The impact of network geometry on performance is noted
when comparing results for centered and random sensor lo-
cation. It is also noted that hybrid POCS outperforms circular
POCS when the sensor often is located outside the beacon
perimeter, in which case circular POCS is not suitable [6]. If
beacons are instead positioned at room corners, performance
improves considerably. Due to space limitations, additional
simulation results and comparisons have been left out. How-
ever, the conclusions drawn above seem valid in all simulated
scenarios where the SINR was not very high, in which case
ranging estimators converge to the same estimate.
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VI. CONCLUSIONS AND FUTURE WORK

In this work we investigate the advantages of adapting the
physical layer distance estimator to the characteristics of a
positioning algorithm. With this approach, we obtain a ranging
and positioning system that offers low complexity and good
performance, while being robust to multipath, NLOS channel
effects and least-squares type objective function local minima.

It is the authors opinion that significant performance gains
may be achieved by understanding and tuning the predefined
parameters, e.g., PFA, λ, etc., involved in our proposed ap-
proach. Also, the crude χ2

2-model of correlator outputs under
hypothesis H1 could be improved.

Further studies on the effect of using energy-detector front-
ends instead of matched filters, having non-homogenous sen-
sor front-ends (matched filter and energy detector front-ends
in the same network), and using the distance estimator output
when tracking mobile nodes are currently on-going.
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