Coding Schemes for Crisscross Error Patterns

Simon Plass Gerd Richter A. J. Han Vinck
German Aerospace Center (DLR) Ulm University University of Essen
Institute of Communications and Navigation Department of TAIT Institute for Experimental Mathematics
82234 Wessling, Germany 89081 Ulm, Germany 45326 Essen, Germany
simon.plass@dir.de gerd.richter@uni-ulm.de vinck@iem.uni-due.de

Abstract—This paper addresses two coding schemes which canRoth [4] introduced codes with maximum rank distance (Rank-
handle emerging errors with crisscross patterns. For example, coqes) that are capable of correcting a specified number of
these error patterns can occur in time-stationary fading channel ted d col Rank-Cod t onl t
conditions of a next generation multi-carrier based transmission corrupted rows and columns. Rank-Lodes cannaot only Corre(?
system. First, a code with maximum rank distance, so-called €rroneous rows and columns, they can even Correc;t a cgrtaln
Rank-Codes, is described and a modified Berlekamp-Masseynumber of rank errors. The number of rank errors is defined
algorithm is provided. Secondly, a permutation code based coding as the rank of the error array.
scheme for crisscross error patterns is presented which can be g\ hermore, it is also possible to define a permutation code
decoded by the concepts of permutation trellis codes. . . . . .

in which each codeword contains different integers as symbols.
|. INTRODUCTION This code can be applied to the crisscross error problem. Other

applications are also given in this paper. The concepts of

Irtl)la humber nge;]ppI_lc?tlons,t,_ the follgvvllngh erro: pr;)tecttlo rmutation trellis codes allow an efficient decoding scheme
problem occurs: The information symbols have to be storgd . .. permutation codes.

glrr(()]r:]ezuZI) airr:agjéhsgmvia()f tr;SZIIS%rgﬁglie%res t:ﬁgig't;eeThis paper will describe the Rank-Codes and will introduce
y y P y émodified Berlekamp-Massey algorithm for Rank-Codes as

w:flrg(:edr tt% asjgﬁcgffrsmgi?{sgirrggvssec;:(frzlugns io;r?gvtv n_efficient decoding procedure for decoding rank errors. A
. AR - 9. utation code for crisscross patterns, its applications, and
crisscross error pattern that is limited to two columns at

its decoding is also addressed.

a bijective mapping

three rows.
n Il. RANK-CODES

. i In this section, we describe some fundamentals of Rank-

£ e o * = Codes that were introduced by Gabidulin in 1985 [3]. Later,
¢ . a decoding scheme based on a modified Berlekamp-Massey
. algorithm is introcuded

N L] L] e e o L] e o —-—
* . A. Fundamentals of Rank-Codes
" Let x be a codeword of lengtln with elements from
* . GF(q"V), where ¢ is a power of a prime. Let us consider
!

A:GF(gV)" — AR,

Fig. 1. Crisscross error pattern

which maps the codeword = (zg, x1,...,z,—1) to @an(NV x

In next generation communications systems based on mufti- @rray. In the following, we consider only codewords of
carrier transmission schemes the symbols are transmitted iteRgthn < NV.
frame structure which can be presented in a matrix from [1].
In hot spot scenarios the channel generates error patteDesinition 1 (Rank Metric over GF(q)) The rank ofk over
which are mainly limited to several sub-carriers due to timerjs defined as(x|q) = r(A|q). The rank function(A|q) is
stationarity of the channel. Solitary errors in a transmitteglyual to the maximum number of linearly independent rows or
frame can be recovered by an inner coding scheme, egplumns ofA overGF(q).
a Reed-Solomon code, and therefore, the addressed coding
schemes in this paper can be applied for the redundantt is well known that the rank function defines a norm.
crisscross errors as an outer code in these scenarios. Indeed,r(x|q) > 0, r(x|¢) = 0 <= x = 0. In addition,
Since the Hamming metric is not appropriate for these errefx + ylq) < r(x|q) + r(y|q). Furthermore,r(ax|q) =
patterns, Delsarte [2] introduced the rank of a matrix as|a|r(x|q) is also fulfilled, if we setja] = 0 for a = 0 and
metric for error correction purpose. Gabidulin [3] and alsfm| = 1 for a # 0.



Definition 2 (Rank Distance) Letx andy be two codewords  The decoding of Rank-Codes with the modified Berlekamp-
of lengthn with elements fronG F (¢"). The rank distance is Massey algorithm can be done based on linearized polynomi-
defined aslist,.(x,y) = r(x — y|q). als.

Similar to the minimum Hamming distance, we can detefefinition 5 (Linearized Polynomials) A linearized polyno-
mine the minimum rank distance of a code mial overGF(¢") is a polynomial of the form

Definition 3 (Minimum Rank Distance) For a codeC the (L) )
minimum rank distance is given by L(z) =) Lya",
p=0
d, := min{dist,(x, eC,yecC, , , . .
min{dist, (x,y)lx Y X7y} whereL, € GF(¢") andN (L) is the norm of the linearized
or when the code is linear by polynomial. The normiN (L) characterizes the larggstwhere
. L, # 0. Let® be the symbolic product of linearized polynomi-
d, := min{r(x|q)|x € C,x # 0}. als defined as

Let C(n,k,d,) be a code of dimensiok, lengthn, and J N
minimum rank distance,.. F(z)®G(z) = F(G(x) =Y Y (figf ) zt,
It is shown in [3] that there also exists a Singleton-style p=0 i+l=p

bound for the rank distance. Theorem 1 shows, how the minj .

' <i<
mum rank distancd,. is bounded by the minimum Hammingml/hereo sisN
distanced;, and by the Singleton bound.

(F),0<1I< N(G),andj = N(F)+N(G).
It is known that the symbolic product is associative and
distributive, but it is non-commutative.

Theorem 1 (Singleton-style Bound)For every linear code B. Decoding of Rank-Codes

C(n, k,d,) C GF(q™)" d, is upper bounded by There exist different algorithms for the decoding of Rank-
d. <d, <mn-—k+1. Codes. Gabidulin [3] introduced the decoding with Euclid’s
o Division algorithm based on linearized polynomials. In 1991,

Definition 4 (MRD Code) A linear(n, k, d,) codeC is called ROth described another decoding_ algorithm [4] that is sim-
maximum rank distance (MRD) code, if the Singleton-styl@ar to the Peterson-Gorenstein-Zierler algorithm for Reed-

bound is fulfilled with equality. Solomon codes. _ N _
In 1968, Berlekamp introduced a very efficient technique for

In [3] and in [4], a construction method for the parity-checkhe decoding of Reed-Solomon codes. One year later, Massey
matrix and the generator matrix of an MRD code is given 48] interpreted this algorithm as a problem of synthesizing
follows: the shortest linear feedback shift-register capable of generating

a prescribed finite sequence of digits. Since the structure of
Theorem 2 (Construction of MRD Codes) A parity-check Reed-Solomon codes is quite similar to the structure of Rank-
matrix H, which defines an MRD code is given by Codes, another possible decoding method for Rank-Codes is
a modified Berlekamp-Massey algorithm, which is introduced

22 Z}I o Z{;*l in this section.
2 o2 o nt Let c, r, ande be the codeword vector, the received vector,
H=| Mo hi o hy and the error vector of length with elements fronGF(¢"),
: : : respectively. The received vectoriis= c +e. Let v = r(e|q)
A gt? g be the rank of the error vecter. Now we present a method
ho hi g of finding the correct codeword, #-v < d,.
and the corresponding generator matrix can be written as  We can calculate the syndromse= (S, S1, ... Sa,—2) by
90 g1 Gn— s=r-H' =(c+eH" =e-H". (1)
q q .. q . . .
932 gqlz 9251 Let us define ai( x n) matrix Y of rank v, whose entries are
G=| 9% 91 T Yn1 | from the base field7F'(¢). Thus, we can write
q’;—l q’;—l ql;_l e = (E(),El,...,Evfl)Y, (2)
90 91 T Yna

whereEy, Ey,...,E, 1 € GF(¢") are linearly independent
where the elementshg, hi,...,h,_1 € GF(¢") and overGF(q). Let the matrixZ be defined as

90,91,---,9n—1 € GF(¢") are linearly independent over q g2
GF(q). S
q q
zl Z PRI z
In the following, we defineCyzp(n,k,d,) as an MRD z" =YH" = . L " )

code of lengthn, dimensionk, and minimum rank distance
dr=n—k+1. 2y_1 2L R



It can be shown that the elements,z;,...,z,_1 € We subtractS,A, on both sides and obtain
GF(q") are linearly independent ovétF(q). Hence, (1) can

v .
be written as _Sp:ZAiSZ:i . p=v,...,20—1.
=1

S0,S1,...,84.—2)=(Eo,E1,...,Ey_q)-Z7
(S0, 51 a--2) = (Fo, Br ) because\; =1 andA; = 0 for 7« > v. This can be written in

or - matrix form as
Sp=D Bzl p=0,....d, 2 @ A S
Jj=0 Av—l *Sv-ﬁ-l
AU— — _Sv
By raising each side of (4) to the power @f? we get S i 2= ) 2 ™
v—1 ’ ’
-p -» A —Soy_
ST =3"E! "z, p=0,....d — 2. G ' ! 20—1
=0 with S defined as
Hence, we have a system df — 1 equations with2 - v s sgil
unknown variables that are linear iy, z1,...,2,_1. Note 511” 531
that also the ranks of the error vector is unknown. It is s—| s .. g4’ ®)
sufficient to find one solution of the system because every - 2 ”_“ ’
solution of Ey, F1,...,E,_1 and zg, z1, ..., z,—1 results in : . :
the same error vectar. g4" ;e 531 )
Let A(z) = >.7_, A 29" be a linearized polynomial, which - - .
y J=0_"7"" '
has all linear combinations dfy, F1, ..., E,_1 over GF(q) th It car: be ?hown chat tr?e matr|$ IS nolnstl_ngul_?;. Thuls,t.
as its roots and\, — 1. We call A(x) the row error e system of equations has a unique solution. This solution

can be efficiently found with a modified Berlekamp-Massey
algorithm. The description of the modified Berlekamp-Massey
algorithm is inspired by [6]. We can see (7) also as a feedback
shift-register with tap weights given b (x). This is shown

in Fig. 2. The symbolsfy, fs, ..., f, stand for the powers of
q',¢%, ..., q" (see (8)).

polynomial. Also, letS(z) = Y297 S;27’ be the linearized
syndrome polynomial.
Now it is possible to define the key equation by

Theorem 3 (Key Equation)

dpr—1
A(m) ® S(m) = F(Jc) nTod x4, | (6) D De -
\évglrenr]ez\ig)) <|sv.an auxiliary linearized polynomial that has a @ a
Proof: From the definition of linearized polynomials we
know that ‘i ‘i | j Sa—a,---, 51,50
Alz)® S(x) = U+i_2 Z AiSlqi 29" Fig. 2. Row error polynomial as a shift-register
p=0 i+l=p

Since all coefficientp > d — 1 vanish because of the modulo The problem of solving the key equation is equivalent
operation of (6) and the symbolic product of two linearizet @ problem of finding the shortest feedback shift-register

polynomials results in another linearized polynomial, we haygat generates the known sequence of syndromes. The design
to prove thatF, = 0 for v < p < d, — 2. procedure is inductive. We start with iteration= 0 and

initialize the length of the shift-registdry, = 0 andA(z) = =.
R P v—1 A\ For each iteration- we create a feedback shift-register that
Z AS] = ZAiSZ—i = ZAi (Z E.20" ) generates the first + 1 syndromes and that has minimum
i+l=p i=0 i=0 s=0 length L, 1. Hence, at the start of iterationwe have a shift-

- » - register given byA(™(z) of length L,.. The notation of the
_ qup (Z AE‘?1> _ qupA(Eg) —0 exponent in brackets declares the iteration. To it (2)

s s ) we determine the discrepancy of the output of thil shift-

register ands,. by

i

s=0

becausep is equal tov = N(A) or larger andEy, F, .. .,

L, L,
E,_, are roots ofA(x). [ | B S ) e N A () g
Hence, we have to solve the following system of equations Ar =5+ ZAj Sy = ZAJ Sr—j- ©)
to getA(x), if 2-v < d,: 7=1 g=0

» For the caseh, = 0, we setAC*+Y(z) = A (z) and the
ZAisq" —0, p=v,...,20—1. iteration is complete. On the other handAf. # 0, the shift-
Pt - register taps have to be modified in the following way:



Theorem 4 (Shift-Register Modification) The linearized | starting values:

polynomial A1) (x) is given by ol A0 =8
. fmxiliary p()li"naminl BO(z) ==
A(r+1)($) _ A('r) (1’) + A7 ® A(m) (1’), (10) index r=20
where m < T Thus, if we choosd = r — m and A = '
. yes
—A,A 9, the new discrepancp’. = 0. A= S+ XE ADsT — o !
Proof: From (9) it follows that '“" '
L7~+1 ‘ A(r i 1)<£) = Al )([) — A2t ® B(")(I) ‘ Al l)(r) — A\(:-)(I) ‘
r_ (r+1) og?
Al = Z AT ST ' ”
With (10) we can write: ne
y
Ly v Lom _ g B (z) = AAO (z)
_ (r) ¢d’ (m) oq 1
A=Y ASE Ay (A, ) L=r1-1
1=0 1=0 -
1 1 1 !
=A+A- Afr]n =A, - ATA’;L[I ’ A’(r]n =0, r:':|v+l
where the syndrome in the second sum has to be shifted for o y ves
.. . cal _ -
| positions because of the symbolic product with. [ ] redo2 D

The new shift-register denoted by *+)(z) has either
lengthL,.y = L, or L.y, = l+ L,,. It can be shown that we
get a shortest shift-register for every iteration, if we choese
as the most recent iteration, at which the shift-register length 1. PERMUTATION CODES
L,,+1 has been increased. It was proved in [6] that the shortest ) T i i
feedback shift-register for Reed-Solomon codes in iteration FOr a binary matrix of dimensioV x n), wheren < N,
has lengthL,,; = max{L,,r + 1 — L,}. Furthermore, it We can use the concept of Permutation Codes.
is proved that the Berlekamp-Massey algorithm generates a
shortest feedback shift-register in each iteration (see, e.g.,s&j
or [7]). A similar proof as in [7] can be given for the modified
Berlekamp-Massey algorithm of Rank-Codes.

Thus, A1 (z) generates the first + 1 syndromes. The  For a Permutation Code of lengf¥i with V different code

Fig. 3. Berlekamp-Massey algorithm for rank errors

finition 6 (Permutation Code) A Permutation CodeC
nsists ofC| codewords of lengttN, where every codeword
contains theN different integerd,2, ..., N as symbols.

shift-register of iterationn produces zeros at the first — symbols in every code word and minimum Hamming distance
1 iterations because there is an additional tap with weight,;,, the cardinality is upper bounded by

one. At iterationm the shift-register produced?,, which is NI

multiplicated by A = —A, A4 This compensated, that ICl < = (11)
was produced by the shift-register of iterationHence, the o e L

new shift-register generates the sequesigeS, . .. , S,. or specific values ofV, we have equality in (11). For

instance ford,;, = N — 1, N is a prime, and therefore,

| = N(N —1). As an example, fotV = 3 and dy,in = 2,
we have 6 codewords; = 123,231, 312,213, 321, 132.

We represent codewords in a binary matrix of dimension
N x N, where every row and every column contains exactly
e single symbol 1. A symbol 1 occurs in ravand column

The modified Berlekamp-Massey algorithm for Rank-Cod
is summarized as a flowchart in Fig. B(z) is an auxiliary
linearized polynomial that is used to stafé™)(z), the row
error polynomial of iterationn.

Now we can summarise the different steps of the decodi

procedure. j if a codeword symbol has the valueat positionj. If the

1) Calculate the syndrome with (1). dimensions of the array af§ x n, we simply shorten the code

2) Solve the key equation (7) with the modified Berlekampand also reduce the minimum distance with the equivalent
Massey algorithm to obtain (). amount.

3) Calculate the linearly independent rootsA Applicat
Eo, Fy,...,E,—1 of A(z). This can be done with ™" .pp ications ) i ,
the algorithm described in [8]. Slnce Permutation codes are now deflned' over a binary

4) Solve the linear system of equations (5) for the unknowRatrix, we can use them a_llso to correct crisscross errors.
variableszg, 21, . . ., 2y_1. Th_e com_blnat|on of p(_ermutanon codes aldFSK (frequency

5) Calculate the matri®y’ using (3). shift keying) modulation can be used to correct narrowband-

6) Calculate the error vectoe by (2) and the decoded@nd impulsive noise, when these errors are considered as
codewordé — r — e. crisscross error patterns.



N-tuples

1) Crisscross and Random ErrorsA row or column er- | Comvolutoral || g L
ror reduces the distance between any two codewords by a codewords

maximum value of two. The reason for this is, that a row dfig. 4. Encoding process for a distance preserving convolutional/permutation
column error can agree with a codeword only in one positioffde

The same argument can be used for random errors. A random

error reduces the distance only by one. Hence, we can correct

these errors if As an example, we give the state transition diagram of a simple
4 state encoding process using a binBry- 1/2 convolutional
code and anV = 3, dyi, = 2 permutation code in Table I.

dmin > 2(trow + tcolumn) + trandom ) (12)

where t.ow, teolumn, and trandom are the number of row,
column, and random errors.
2) M-FSK: In an M-FSK modulation scheme, symbols are

TABLE |
ENCODING AND DISTANCE PRESERVED MAPPING

modulated as one af/ = N orthogonal sinusoidal waves and '?)pft '%p;‘t '%pft
a non-coherent demodulator deteéfsenvelopes. In a hard old state | new state| binary 2-tuples| mapping
decision detector (detecting presence of a frequency), we put 0 01 0011 231123
the binary outputs in ai x n decoding matrix. We output the % S i (ﬁ 88 ﬂg %gi
message corresponding to the codeword that has the maximum 3 23 10 01 132 213
number of agreements with the demodulator output. Several
channel disturbances can be considered: Note that the Hamming distance between any two 2-tuples
« Narrow band noise causes large demodulator envelope$ncreased by one for the corresponding codewords from the
and thus a row is set equal to 1; permutation code. The binary free distance for this particular
« Impulse noise has a broadband character and thus leadde is 5 before the mapping and by inspection it is easy to see
to a column with all entries equal to 1; that it is 8 after the mapping. Every branch in the trellis of the
« Background noise introduces incorrect decisions, i.&onvolutional code corresponds to a permutation code word.
insertion or deletion of a symbol 1; The decoding is easy, since we compare the codewords along

«» Fading will cause disappearance of a particular envelophe trellis branches with the receivéétuple and perform ML
In this case, a row of the decoding matrix is set to 0. Viterbi decoding.

The hard decision non-coherent demodulation in combination
with the permutation code allows the correction &f;, — i ]
1 incorrect demodulator outputs caused by narrow band- ,\We presented two coding schemes which can handle so-
impulse-, background noise and fading. called crisscross error patterns. Rank-Codes were described
3) FFH/M-FSK Multi-Access:In frequency hopping, we and a modifieo_l Berlekamp-Massey algorithm for this coding
can assign permutation codewords as signature sequence¥cfgme was introduced. Further, a presented permutation
particular users. As an example, for a distance 1 code, we based coding scheme can also scope with crisscross errors.
have N(N — 1) codewords and codewords differ in at least

N — 1 positions, [9]. Hence, signatures agree in maximum Vikael Sternad. T S ren K The WINNER
e . . . ikael Sternad, Tommy Svensson, andr ang. The

1 position. _Agaln’ codewords can be representeq In a blnaR'] B3G system MAC concept. IRroceedings IEEE Vehicular Technology

N x n matrix. A decoder checks the presence of its signature cConference (VTC 2006-Fall), Morial, Canada September 2006.

in the matrix. The know|edge of the distance structure enablddl P. Delsarte. Bilinear forms over a finite fielq with applications to coding

us to calculate the error probability more exactly, see [10]. | theory. Journal of combinatorial theory. Series 25(4):226—-241, 1978.

e : . ] E. M. Gabidulin. Theory of codes with maximum rank distance.
addition to interference, we can also correct (CriSSCross) errors Problemy Peredachi Informatsi21(1):3-16, Januar—March 1985.
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