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Abstract— This paper addresses two coding schemes which can
handle emerging errors with crisscross patterns. For example,
these error patterns can occur in time-stationary fading channel
conditions of a next generation multi-carrier based transmission
system. First, a code with maximum rank distance, so-called
Rank-Codes, is described and a modified Berlekamp-Massey
algorithm is provided. Secondly, a permutation code based coding
scheme for crisscross error patterns is presented which can be
decoded by the concepts of permutation trellis codes.

I. I NTRODUCTION

In a number of applications, the following error protection
problem occurs: The information symbols have to be stored
in (N × n) arrays. Some of these symbols are transmitted
erroneously in such a way that all corrupted symbols are
confined to a specified number of rows or columns (or both).
We refer to such errors as crisscross errors. Fig. 1 shows a
crisscross error pattern that is limited to two columns and
three rows.
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Fig. 1. Crisscross error pattern

In next generation communications systems based on multi-
carrier transmission schemes the symbols are transmitted in a
frame structure which can be presented in a matrix from [1].
In hot spot scenarios the channel generates error patterns
which are mainly limited to several sub-carriers due to time-
stationarity of the channel. Solitary errors in a transmitted
frame can be recovered by an inner coding scheme, e.g.,
a Reed-Solomon code, and therefore, the addressed coding
schemes in this paper can be applied for the redundant
crisscross errors as an outer code in these scenarios.

Since the Hamming metric is not appropriate for these error
patterns, Delsarte [2] introduced the rank of a matrix as a
metric for error correction purpose. Gabidulin [3] and also

Roth [4] introduced codes with maximum rank distance (Rank-
Codes) that are capable of correcting a specified number of
corrupted rows and columns. Rank-Codes cannot only correct
erroneous rows and columns, they can even correct a certain
number of rank errors. The number of rank errors is defined
as the rank of the error array.

Furthermore, it is also possible to define a permutation code
in which each codeword contains different integers as symbols.
This code can be applied to the crisscross error problem. Other
applications are also given in this paper. The concepts of
permutation trellis codes allow an efficient decoding scheme
for these permutation codes.

This paper will describe the Rank-Codes and will introduce
a modified Berlekamp-Massey algorithm for Rank-Codes as
an efficient decoding procedure for decoding rank errors. A
permutation code for crisscross patterns, its applications, and
its decoding is also addressed.

II. RANK -CODES

In this section, we describe some fundamentals of Rank-
Codes that were introduced by Gabidulin in 1985 [3]. Later,
a decoding scheme based on a modified Berlekamp-Massey
algorithm is introcuded

A. Fundamentals of Rank-Codes

Let x be a codeword of lengthn with elements from
GF (qN ), where q is a power of a prime. Let us consider
a bijective mapping

A : GF (qN )n → An
N ,

which maps the codewordx = (x0, x1, . . . , xn−1) to an(N×
n) array. In the following, we consider only codewords of
lengthn ≤ N .

Definition 1 (Rank Metric over GF (q)) The rank ofx over
q is defined asr(x|q) = r(A|q). The rank functionr(A|q) is
equal to the maximum number of linearly independent rows or
columns ofA overGF (q).

It is well known that the rank function defines a norm.
Indeed,r(x|q) ≥ 0, r(x|q) = 0 ⇐⇒ x = 0. In addition,
r(x + y|q) ≤ r(x|q) + r(y|q). Furthermore,r(ax|q) =
|a|r(x|q) is also fulfilled, if we set|a| = 0 for a = 0 and
|a| = 1 for a 6= 0.



Definition 2 (Rank Distance) Let x andy be two codewords
of lengthn with elements fromGF (qN ). The rank distance is
defined asdistr(x,y) = r(x− y|q).

Similar to the minimum Hamming distance, we can deter-
mine the minimum rank distance of a codeC.

Definition 3 (Minimum Rank Distance) For a codeC the
minimum rank distance is given by

dr := min{distr(x,y)|x ∈ C,y ∈ C,x 6= y},
or when the code is linear by

dr := min{r(x|q)|x ∈ C,x 6= 0}.
Let C(n, k, dr) be a code of dimensionk, length n, and

minimum rank distancedr.
It is shown in [3] that there also exists a Singleton-style

bound for the rank distance. Theorem 1 shows, how the mini-
mum rank distancedr is bounded by the minimum Hamming
distancedh and by the Singleton bound.

Theorem 1 (Singleton-style Bound)For every linear code
C(n, k, dr) ⊂ GF (qN )n dr is upper bounded by

dr ≤ dh ≤ n− k + 1.

Definition 4 (MRD Code) A linear(n, k, dr) codeC is called
maximum rank distance (MRD) code, if the Singleton-style
bound is fulfilled with equality.

In [3] and in [4], a construction method for the parity-check
matrix and the generator matrix of an MRD code is given as
follows:

Theorem 2 (Construction of MRD Codes) A parity-check
matrix H, which defines an MRD code is given by

H =




h0 h1 · · · hn−1

hq
0 hq

1 · · · hq
n−1

hq2

0 hq2

1 · · · hq2

n−1
...

...
.. .

...

hqd−2

0 hqd−2

1 · · · hqd−2

n−1




and the corresponding generator matrix can be written as

G =




g0 g1 · · · gn−1

gq
0 gq

1 · · · gq
n−1

gq2

0 gq2

1 · · · gq2

n−1
...

...
.. .

...

gqk−1

0 gqk−1

1 · · · gqk−1

n−1




,

where the elementsh0, h1, . . . , hn−1 ∈ GF (qN ) and
g0, g1, . . . , gn−1 ∈ GF (qN ) are linearly independent over
GF (q).

In the following, we defineCMRD(n, k, dr) as an MRD
code of lengthn, dimensionk, and minimum rank distance
dr = n− k + 1.

The decoding of Rank-Codes with the modified Berlekamp-
Massey algorithm can be done based on linearized polynomi-
als.

Definition 5 (Linearized Polynomials) A linearized polyno-
mial overGF (qN ) is a polynomial of the form

L(x) =
N(L)∑
p=0

Lpx
qp

,

whereLp ∈ GF (qN ) andN(L) is the norm of the linearized
polynomial. The normN(L) characterizes the largestp, where
Lp 6= 0. Let⊗ be the symbolic product of linearized polynomi-
als defined as

F (x)⊗G(x) = F (G(x)) =
j∑

p=0

∑

i+l=p

(
fig

qi

l

)
xqp

,

where0 ≤ i ≤ N(F ), 0 ≤ l ≤ N(G), andj = N(F )+N(G).
It is known that the symbolic product is associative and

distributive, but it is non-commutative.

B. Decoding of Rank-Codes

There exist different algorithms for the decoding of Rank-
Codes. Gabidulin [3] introduced the decoding with Euclid’s
Division algorithm based on linearized polynomials. In 1991,
Roth described another decoding algorithm [4] that is sim-
ilar to the Peterson-Gorenstein-Zierler algorithm for Reed-
Solomon codes.

In 1968, Berlekamp introduced a very efficient technique for
the decoding of Reed-Solomon codes. One year later, Massey
[5] interpreted this algorithm as a problem of synthesizing
the shortest linear feedback shift-register capable of generating
a prescribed finite sequence of digits. Since the structure of
Reed-Solomon codes is quite similar to the structure of Rank-
Codes, another possible decoding method for Rank-Codes is
a modified Berlekamp-Massey algorithm, which is introduced
in this section.

Let c, r, ande be the codeword vector, the received vector,
and the error vector of lengthn with elements fromGF (qN ),
respectively. The received vector isr = c+ e. Let v = r(e|q)
be the rank of the error vectore. Now we present a method
of finding the correct codeword, if2 · v < dr.

We can calculate the syndromes = (S0, S1, . . . Sdr−2) by

s = r ·HT = (c + e)HT = e ·HT . (1)

Let us define a (v×n) matrix Y of rank v, whose entries are
from the base fieldGF (q). Thus, we can write

e = (E0, E1, . . . , Ev−1)Y, (2)

whereE0, E1, . . . , Ev−1 ∈ GF (qN ) are linearly independent
over GF (q). Let the matrixZ be defined as

ZT = YHT =




z0 zq
0 · · · zqd−2

0

z1 zq
1 · · · zqd−2

1
...

...
. ..

...

zv−1 zq
v−1 · · · zqd−2

v−1




. (3)



It can be shown that the elementsz0, z1, . . . , zv−1 ∈
GF (qN ) are linearly independent overGF (q). Hence, (1) can
be written as

(S0, S1, . . . , Sdr−2) = (E0, E1, . . . , Ev−1) · ZT

or

Sp =
v−1∑

j=0

Ejz
qp

j , p = 0, . . . , dr − 2. (4)

By raising each side of (4) to the power ofq−p we get

Sq−p

p =
v−1∑

j=0

Eq−p

j zj , p = 0, . . . , dr − 2. (5)

Hence, we have a system ofdr − 1 equations with2 · v
unknown variables that are linear inz0, z1, . . . , zv−1. Note
that also the rankv of the error vector is unknown. It is
sufficient to find one solution of the system because every
solution of E0, E1, . . . , Ev−1 and z0, z1, . . . , zv−1 results in
the same error vectore.

Let Λ(x) =
∑v

j=0 Λjx
qj

be a linearized polynomial, which
has all linear combinations ofE0, E1, . . . , Ev−1 over GF (q)
as its roots andΛ0 = 1. We call Λ(x) the row error
polynomial. Also, letS(x) =

∑d−2
j=0 Sjx

qj

be the linearized
syndrome polynomial.

Now it is possible to define the key equation by

Theorem 3 (Key Equation)

Λ(x)⊗ S(x) = F (x)mod xqdr−1
, (6)

where F (x) is an auxiliary linearized polynomial that has
norm N(F ) < v.

Proof: From the definition of linearized polynomials we
know that

Λ(x)⊗ S(x) =
v+dr−2∑

p=0


 ∑

i+l=p

ΛiS
qi

l


 xqp

.

Since all coefficientsp ≥ d− 1 vanish because of the modulo
operation of (6) and the symbolic product of two linearized
polynomials results in another linearized polynomial, we have
to prove thatFp = 0 for v ≤ p ≤ dr − 2.

∑

i+l=p

ΛiS
qi

l =
p∑

i=0

ΛiS
qi

p−i =
p∑

i=0

Λi

(
v−1∑
s=0

Esz
qp−i

s

)qi

=
v−1∑
s=0

zqp

s

(
p∑

i=0

ΛiE
qi

s

)
=

v−1∑
s=0

zqp

s Λ(Es) = 0

becausep is equal tov = N(Λ) or larger andE0, E1, . . . ,
Ev−1 are roots ofΛ(x).

Hence, we have to solve the following system of equations
to getΛ(x), if 2 · v < dr:

p∑

i=0

ΛiS
qi

p−i = 0 , p = v, . . . , 2v − 1.

We subtractSpΛ0 on both sides and obtain

−Sp =
v∑

i=1

ΛiS
qi

p−i , p = v, . . . , 2v − 1.

becauseΛ0 = 1 andΛi = 0 for i > v. This can be written in
matrix form as

S




Λv

Λv−1

Λv−2

...
Λ1




=




−Sv

−Sv+1

−Sv+2

...
−S2v−1




, (7)

with S defined as

S =




Sqv

0 · · · Sq1

v−1

Sqv

1 · · · Sq1

v

Sqv

2 · · · Sq1

v+1
...

. . .
...

Sqv

v−1 · · · Sq1

2v−2




. (8)

It can be shown that the matrixS is nonsingular. Thus,
the system of equations has a unique solution. This solution
can be efficiently found with a modified Berlekamp-Massey
algorithm. The description of the modified Berlekamp-Massey
algorithm is inspired by [6]. We can see (7) also as a feedback
shift-register with tap weights given byΛ(x). This is shown
in Fig. 2. The symbolsf1, f2, . . . , fv stand for the powers of
q1, q2, . . . , qv (see (8)).

Sv−1 Sv−2 S0. . .

fvf2f1

−Λν−Λ2−Λ1

. . .

. . .

Sd−2, . . . , S1, S0

Fig. 2. Row error polynomial as a shift-register

The problem of solving the key equation is equivalent
to a problem of finding the shortest feedback shift-register
that generates the known sequence of syndromes. The design
procedure is inductive. We start with iterationr = 0 and
initialize the length of the shift-registerL0 = 0 andΛ(x) = x.
For each iterationr we create a feedback shift-register that
generates the firstr + 1 syndromes and that has minimum
lengthLr+1. Hence, at the start of iterationr we have a shift-
register given byΛ(r)(x) of length Lr. The notation of the
exponent in brackets declares the iteration. To findΛ(r+1)(x)
we determine the discrepancy of the output of ther-th shift-
register andSr by

∆r = Sr +
Lr∑

j=1

Λ(r)
j Sqj

r−j =
Lr∑

j=0

Λ(r)
j Sqj

r−j . (9)

For the case∆r = 0, we setΛ(r+1)(x) = Λ(r)(x) and the
iteration is complete. On the other hand, if∆r 6= 0, the shift-
register taps have to be modified in the following way:



Theorem 4 (Shift-Register Modification) The linearized
polynomialΛ(r+1)(x) is given by

Λ(r+1)(x) = Λ(r)(x) + Axql ⊗ Λ(m)(x), (10)

where m < r. Thus, if we choosel = r − m and A =
−∆r∆−ql

m , the new discrepancy∆′
r = 0.

Proof: From (9) it follows that

∆′
r =

Lr+1∑

j=0

Λ(r+1)
j Sqj

r−j .

With (10) we can write:

∆′
r =

Lr∑

i=0

Λ(r)
i Sqi

r−i + A

Lm∑

i=0

(
Λ(m)

i Sqi

r−i−l

)ql

= ∆r + A ·∆ql

m = ∆r −∆r∆−ql

m ·∆ql

m = 0,

where the syndromes in the second sum has to be shifted for
l positions because of the symbolic product withxql

.
The new shift-register denoted byΛ(r+1)(x) has either

lengthLr+1 = Lr or Lr+1 = l+Lm. It can be shown that we
get a shortest shift-register for every iteration, if we choosem
as the most recent iteration, at which the shift-register length
Lm+1 has been increased. It was proved in [6] that the shortest
feedback shift-register for Reed-Solomon codes in iterationr
has lengthLr+1 = max{Lr, r + 1 − Lr}. Furthermore, it
is proved that the Berlekamp-Massey algorithm generates a
shortest feedback shift-register in each iteration (see, e.g., [5]
or [7]). A similar proof as in [7] can be given for the modified
Berlekamp-Massey algorithm of Rank-Codes.

Thus, Λ(r+1)(x) generates the firstr + 1 syndromes. The
shift-register of iterationm produces zeros at the firstm −
1 iterations because there is an additional tap with weight
one. At iterationm the shift-register produces∆ql

m, which is
multiplicated byA = −∆r∆−ql

m . This compensates∆r that
was produced by the shift-register of iterationr. Hence, the
new shift-register generates the sequenceS0, S1, . . . , Sr.

The modified Berlekamp-Massey algorithm for Rank-Codes
is summarized as a flowchart in Fig. 3.B(x) is an auxiliary
linearized polynomial that is used to storeΛ(m)(x), the row
error polynomial of iterationm.

Now we can summarise the different steps of the decoding
procedure.

1) Calculate the syndrome with (1).
2) Solve the key equation (7) with the modified Berlekamp-

Massey algorithm to obtainΛ(x).
3) Calculate the linearly independent roots

E0, E1, . . . , Ev−1 of Λ(x). This can be done with
the algorithm described in [8].

4) Solve the linear system of equations (5) for the unknown
variablesz0, z1, . . . , zv−1.

5) Calculate the matrixY using (3).
6) Calculate the error vectore by (2) and the decoded

codewordĉ = r− e.

no

no

yes

Λ(r+1)(x) = Λ(r)(x) − ∆rx
q
⊗ B(r)(x)

L = r + 1 − L

B(r+1)(x) = ∆−1
r Λ(r)(x)

yes

L = 0
row error polynomial
auxiliary polynomial
index

B(0)(x) = x

r = 0

∆r = Sr +
∑L

j=1 Λ
(r)
j S

qj

r−j = 0?

shift register length
Λ(0)(x) = x

r = r + 1

r > dr − 2
yes

END

2L > r?

no

B(r+1)(x) = xq
⊗ B(r)(x)

Λ(r+1)(x) = Λ(r)(x)

starting values:starting values:

Fig. 3. Berlekamp-Massey algorithm for rank errors

III. PERMUTATION CODES

For a binary matrix of dimension(N × n), wheren ≤ N ,
we can use the concept of Permutation Codes.

Definition 6 (Permutation Code) A Permutation CodeC
consists of|C| codewords of lengthN , where every codeword
contains theN different integers1, 2, . . . , N as symbols.

For a Permutation Code of lengthN with N different code
symbols in every code word and minimum Hamming distance
dmin, the cardinality is upper bounded by

|C| ≤ N !
(dmin − 1)!

(11)

For specific values ofN , we have equality in (11). For
instance fordmin = N − 1, N is a prime, and therefore,
|C| = N(N − 1). As an example, forN = 3 and dmin = 2,
we have 6 codewords,C = 123, 231, 312, 213, 321, 132.

We represent codewords in a binary matrix of dimension
N ×N , where every row and every column contains exactly
one single symbol 1. A symbol 1 occurs in rowi and column
j if a codeword symbol has the valuei at positionj. If the
dimensions of the array areN×n, we simply shorten the code
and also reduce the minimum distance with the equivalent
amount.

A. Applications

Since Permutation codes are now defined over a binary
matrix, we can use them also to correct crisscross errors.
The combination of permutation codes andM -FSK (frequency
shift keying) modulation can be used to correct narrowband-
and impulsive noise, when these errors are considered as
crisscross error patterns.



1) Crisscross and Random Errors:A row or column er-
ror reduces the distance between any two codewords by a
maximum value of two. The reason for this is, that a row or
column error can agree with a codeword only in one position.
The same argument can be used for random errors. A random
error reduces the distance only by one. Hence, we can correct
these errors if

dmin > 2(trow + tcolumn) + trandom , (12)

where trow, tcolumn, and trandom are the number of row,
column, and random errors.

2) M -FSK: In anM -FSK modulation scheme, symbols are
modulated as one ofM = N orthogonal sinusoidal waves and
a non-coherent demodulator detectsN envelopes. In a hard
decision detector (detecting presence of a frequency), we put
the binary outputs in anN×n decoding matrix. We output the
message corresponding to the codeword that has the maximum
number of agreements with the demodulator output. Several
channel disturbances can be considered:
• Narrow band noise causes large demodulator envelopes

and thus a row is set equal to 1;
• Impulse noise has a broadband character and thus leads

to a column with all entries equal to 1;
• Background noise introduces incorrect decisions, i.e.,

insertion or deletion of a symbol 1;
• Fading will cause disappearance of a particular envelope.

In this case, a row of the decoding matrix is set to 0.
The hard decision non-coherent demodulation in combination
with the permutation code allows the correction ofdmin −
1 incorrect demodulator outputs caused by narrow band- ,
impulse-, background noise and fading.

3) FFH/M -FSK Multi-Access:In frequency hopping, we
can assign permutation codewords as signature sequences to
particular users. As an example, for a distanceN−1 code, we
haveN(N − 1) codewords and codewords differ in at least
N − 1 positions, [9]. Hence, signatures agree in maximum
1 position. Again, codewords can be represented in a binary
N ×n matrix. A decoder checks the presence of its signature
in the matrix. The knowledge of the distance structure enables
us to calculate the error probability more exactly, see [10]. In
addition to interference, we can also correct (crisscross) errors
due to narrowband- and impulsive noise.

B. Complexity of Decoding

Decoding of these codes can be done by using regular
minimum distance decoding. However, for codes with large
cardinality, this can be a complex operation, since a received
vector has to be compared with all codewords in the codebook.
As an alternative approach, we developed the concepts of
permutation trellis codes [11], where the Viterbi algorithm is
used to do the decoding with low complexity. The principle
is given in Fig. 4.

The mapping converts binaryb-tuples from the convolu-
tional code intoN -tuples or codewords from a permutation
code. The key idea is that the distance between any twoN -
tuples is at least as large as the distance between the corre-
spondingb-tuples. This property is called distance preserving.

Convolutional
encoder

Mapping

N-tuples

codewords

Fig. 4. Encoding process for a distance preserving convolutional/permutation
code

As an example, we give the state transition diagram of a simple
4 state encoding process using a binaryR = 1/2 convolutional
code and anN = 3, dmin = 2 permutation code in Table I.

TABLE I

ENCODING AND DISTANCE PRESERVED MAPPING

input input input
0 1 0 1 0 1

old state new state binary 2-tuples mapping
0 0 1 00 11 231 123
1 2 3 01 00 213 132
2 0 1 11 00 123 231
3 2 3 10 01 132 213

Note that the Hamming distance between any two 2-tuples
is increased by one for the corresponding codewords from the
permutation code. The binary free distance for this particular
code is 5 before the mapping and by inspection it is easy to see
that it is 8 after the mapping. Every branch in the trellis of the
convolutional code corresponds to a permutation code word.
The decoding is easy, since we compare the codewords along
the trellis branches with the receivedN -tuple and perform ML
Viterbi decoding.

IV. CONCLUSIONS

We presented two coding schemes which can handle so-
called crisscross error patterns. Rank-Codes were described
and a modified Berlekamp-Massey algorithm for this coding
scheme was introduced. Further, a presented permutation
based coding scheme can also scope with crisscross errors.
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