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Abstract—This paper presents a comparison between the 

outage capacity of MIMO channels predicted by the Kronecker 
and Müller models as a function of the number of scatterers, 
transmit and receive antennas. The Müller model is based on the 
single-scattered rays between arrays of transmit- and receive 
antennas, while the Kronecker model considers only double 
scattering. The channel capacity predictions by the Müller model 
were observed to be higher than those by the Kronecker model. 
Moreover, Müller model is simpler since it is characterized by 
fewer parameters, and accounts for frequency selective fading 
whilst the Kronecker model is valid only for frequency flat 
fading.    
 

Index Terms— Antenna arrays, communication system 
performance, diversity methods, eigenvalues and eigenfunctions, 
fading channels, information rates, MIMO systems 
 

I. INTRODUCTION 
 

IMO systems provide significant improvement in the 
capacity of wireless communication systems. However, 

an accurate model of the MIMO channel is needed for a 
realistic assessment of the capacity. The parameters 
determining the channel capacity include the number and the 
spacing of transmit and receive antennas and the scattering 
richness. Since rays undergo significant amounts of 
attenuation each time they are scattered, the channel capacity 
is also influenced by the number of times the transmitted rays 
are scattered in the propagation process.  

This paper presents a comparative study of two models for 
the MIMO channels. In the Kronecker model, which applies 
for a flat-fading MIMO channel, the rays are assumed to be 
scattered twice before arriving at the receiver; thus direct and 
the single-scattered rays are ignored [1], [2]. In this model, 
fading correlations are separated at transmit and receive 
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antenna arrays. The second model, that will be considered, is 
an asymptotic random channel model for a frequency-
selective fading MIMO channel, where only singly scattered 
rays are considered [3]. This model, which will be referred to 
as the Müller model, is characterized by the number of 
scatterers, transmit- and receive antennas. Only these 
parameters show significant influence on the singular value 
distribution of the random channel matrix, and uniquely 
determine the channel capacity. It is simpler and emphasizes 
the importance of scattering richness in MIMO channels. 

II. MIMO CHANNEL MODELS 
 

Consider a flat-fading MIMO system with a transmit array 
of NT antennas and a receive array of NR antennas. The NR-
dimensional received signal vector y may be written as 

= +y Hx n ,                    (1) 
where x denotes the NT-dimensional transmitted complex 
signal vector, and n is an NR-dimensional noise vector with 
zero-mean independent and identically distributed (i.i.d.) 
complex Gaussian entries, with real and imaginary parts 
having equal variances. H denotes the NRxNT channel matrix 
with complex elements {hi,j}, describing the channel gain 
between the jth transmitting antenna and the ith receiving 
antenna. 
 The capacity of a MIMO system when the transmitter has 
no channel state information (CSI) is given by  

( )2log det / sec/H

T

C bits Hz
N
γ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

I HH              (2) 

where γ is the average signal-to-noise ratio (SNR) per receive 
antenna, found by equally dividing the total transmit power 
E[xHx] into NT transmit antennas, and I is an NRxNR identity 
matrix. The superscript .H and E[.] denote, respectively, 
conjugate transpose, and the mean value. Note that the 
capacity C in (2) is a random variable since the channel matrix 
H has random entries. 
 There are various methods for finding the average capacity. 
The simplest approach consists of replacing the mean value of 
HHH in (2) by a deterministic correlation matrix to find the 
resulting eigenvalues and the average capacity [4],[5]. The 
entries of the correlation matrix may be correlated with each 
other depending on the antenna spacing, angular spread of the 
transmitted and the received signals, and the scattering 
richness. Since it is impossible to reduce fading correlations 
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simultaneously between all array elements, the validity of the 
model chosen for the correlation matrix is critical. The second 
approach is based on the observation that, when the elements 
of H are zero-mean complex Gaussian random variables, HHH 
is a central Wishart matrix. The probability density function 
(pdf) of the ordered eigenvalues of a complex Wishart matrix 
is known [6]. Ergodic and outage capacities can then be 
determined by using the joint pdf of the ordered non-zero 
eigenvalues of HHH [6],[7]. In this model, it may not be easy 
to determine the marginal pdf’s of the eigenvalues and the 
capacity analytically.  Here, we will focus our attention on the 
Kronecker and the Müller models.  
 

A. Kronecker Model 
 
This model applies to a flat-fading channel, where the 

transmitter has no CSI, whilst the receiver has perfect CSI. 
Only the scatterers located in the vicinity of transmit and 
receive antenna arrays are assumed to contribute to the 
propagation mechanism. These scatterers are assumed to be in 
the far-fields of the corresponding arrays. The remote 
scatterers are ignored, since path losses will limit their 
contributions. Here, the terminology used in [1] is adopted to 
avoid confusion. The reader is referred to [1], [2] for a 
detailed description of this model. 

As shown in Fig. 1, dt and dr denote the element spacing of 
a uniform linear array of NT antennas at the transmitter and of 
NR antennas at the receiver, respectively. The antenna 
elements are assumed to be isotropic. The S scatterers close to 
the transmit array (transmit scatterers) are assumed to be at 
least at a distance of Rt0 from the transmit array and to be 
confined to a scattering radius of Dt from the line-of-sight 
(LOS). The exact location of the scatterers is not needed in 
this model. Corresponding parameters for the receiving side 
are Rr0 and Dr, respectively. The number of isotropic scatterers 
S on both sides is assumed to be sufficiently large (typically 
S>10) so that random fading conditions apply. The distance 
between transmit and receive scatterers is denoted by R where 
R>>Rr0 and Rt0.  
 

 
Fig. 1.  Kronecker model for a fading MIMO channel 
 

Rays transmitted by the transmit array are assumed to be 
scattered firstly from a transmit scatterer, with an angular 
spread of ( )1

02 tant t tD Rθ −= , and then from a receive 

scatterer, with an angular spread of ( )1
02 tanr r rD Rθ −= , 

before arriving at the receive array. Receive scatterers may be 
considered to consist of S virtual antennas with an average 
spacing of 2Dr/S, and having an angular spread of  

( )12 tanS tD Rθ −= . 

The NRxNT MIMO channel matrix is assumed to be given 
by [1] 

1 2 1 2 1 2
, ,2 ,

1
r r s r t td r D S t dS θ θ θ=H R G R G R                   (3) 

NRxNR matrix 
rr d,θR denotes the correlation matrix governing 

the fading correlations between the receive antennas, while 
NTxNT matrix 

tt d,θR  accounts for the fading correlations 

between the transmit antennas. The SxS matrix SDrs 2,θR  

determines the fading correlations between the signals 
received, with an angular spread of θs, by the receive 
scatterers, separated from each other with an average spacing 
of 2Dr/S. The SxNT matrix Gt has i.i.d. complex Gaussian 
entries and accounts for the propagation between the NT 
transmit antennas and the S receive scatterers. Similarly, the 
NRxS matrix Gr describes the propagation between S receive 
scatterers and NR receive antennas. A factor S1  is used to 
normalize the channel energy, i.e., to make the channel energy 
independent of the number of scatterers. 

Factorization of the channel matrix as in (3) allows the 
separation of the fading correlations at each stage of the 
propagation process. This may help the design and 
optimization of MIMO systems.  

Kronecker model is anticipated to model better the MIMO 
channels in urban areas, because it ignores direct and single-
scattered rays and assumes that the scattering takes place at 
scatterers in the vicinity of the transmitter and the receiver. 
This model is reported to fail in predicting the MIMO system 
performance under certain circumstances and to be more 
accurate in channels with low fading correlations [8], [9].  

 

B. Müller Model 
 

This is an analytical asymptotic model for a frequency 
selective channel. It is based on the fact that the singular 
values of  the random channel matrix H shows fewer random 
fluctuations and eventually become deterministic as its size 
goes to infinity. The singular value distributions of 
asymptotically large matrices can be calculated analytically 
and only the surviving physical parameters show significant 
influence on the singular value distribution. Though the 
asymptotic distribution of singular values is only an 
approximation to the distribution of finite-size matrices, the 
asymptotic singular value distribution thus found can help 
identifying the dominant physical parameters which 
characteize a MIMO channel [3],[7],[10]. The random matrix 
theory is widely used in the analysis of MIMO systems. The 
reader is referred to [3], [11] for details.  
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 Consider arrays of NT transmit and NR receive antennas in a 
channel with a total number of S scatterers. As shown in     
Fig. 2, transmit and receive antenna arrays are located at the 
foci of concentric ellipsoidal (equi-delay) surfaces on which 
scatterers are located. The scatterers located on the surface of 
outer ellipsoids correspond to longer delays for the received 
rays. The channel richness is defined as the number of 
scatterers that can be distinguished in delay and space 
coordinates. Each ray is assumed to be scattered only once 
before arriving at the receive antenna array, i.e., direct (LOS) 
ray and multiple scattering is ignored. Note that multiple 
scattering implies weaker received rays compared to single 
scattering.  

 
Fig. 2.  Delay and space coordinates for the Müller model   
 
 Consider scattering from the surface of the lth ellipsoid.  
The propagation coefficient between µth transmit antenna and 
νth receive antenna is given by  
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Here, the summation with respect to κ accounts for the 
contributions from all the Sl scatterers located on the surface 
of the lth ellipsoid. , ,κ υϕ , , ,κ µϑ , ,Aκ  and S  show, 

respectively, the relative carrier phase at νth receive antenna 
due to κth scatterer, the relative carrier phase at κth scatterer 
due to µth transmit antenna, the attenuation of the κth path, 
and the number of scatterers at delay ℓ.  

The multipath intensity profile of this frequency-selective 
MIMO channel is defined by the average received power from 
rays with Rayleigh distributed amplitudes, Aκ,l, corresponding 
to  ℓth delay:  

2
,

1

1 , 1,2,
S

P E A L
S κ

κ =

⎡ ⎤ =⎢ ⎥⎣ ⎦∑                   (5) 

NR-dimensional received signal vector y at time k may be 
written as [3] 

[ ] [ ]
1

1
L

k k
=

= − −∑y H x ,                 (6) 

where x denotes the NT-dimensional transmitted signal vector 

and the NRxNT channel matrix Hl  corresponds to lth delay. 
The eigenvalue distribution of HH H , 1<l<L, and of ΣΣH, 

where 
1

L

=∑Σ H is the space-time channel matrix, are 

identical and converge to identical asymptotic limits as NT, NR 
→∞ and NT/NR remains fixed [3]. This implies that a channel 
with a multipath intensity profile (frequency-selective fading 
channel), defined by (5), may be considered as a channel with 
a single delay (flat-fading channel) if the richness per delay, 
Sℓ/NR, is replaced by the total (channel) richness, S/NR: 

1

L

R R

S S
N N

ρ
=

=∑                  (7) 

Consequently, the asymptotic eigenvalue distribution of the 
space-time channel matrix does not change if delay times of 
particular paths vary. Hence, there is no need to distinguish 
between the distributions of path attenuations conditioned on 
different delays. This implies that the multipath intensity 
profile, hence the frequency-selectivity of the MIMO channel 
does not alter the asymptotic eigenvalue distribution. To 
summarize, the channel is sufficiently characterized by the 
channel richness, ρ=S/NR, the system load, β=NT/NR, and the 
distribution of attenuations Aκ, 1<κ<S as S→∞.  Here, Aκ=1 is 
assumed for all κ values.  
 Note that the Kronecker model explicitly accounts for the 
fading correlations in the propagation process. However, the 
fading correlations in the channel are implicitly accounted for 
by the Müller model through the diversity provided by the 
asymptotically large channel richness and the numbers of 
transmit and receive antennas. 

III. RESULTS 
 

In this section, we compare the outage capacity 
performance of the Kronecker and the Müller models. The 
parameters used to characterize the Kronecker model are 
listed in Table I [1]. The frequency of operation was chosen to 
be 2 GHz. 

 
TABLE I 

PARAMETER VALUES USED FOR THE KRONECKER MODEL                    

dt (m) dr (m) Rt0 (m) Rr0(m) Dt  (m) Dr (m) R (m) 

0.15 0.15 50 50 50 50 50000 

 
Noting that dt=dr=λ and angular spreads for arrival and 

departure, θr=θt=900, are sufficiently large, fading correlations 
between antennas in transmit and receive arrays are not very 
strong. The parameter values in Table I also suggest that the 
operation is in the far fields of both scatterers and antennas. 

For a fixed value of NT/NR=4 and S=21, the outage capacity 
by the Kronecker model (KM) shows a steady improvement 
with increasing values of NT and NR (see Fig. 3). However, 
outage capacity predictions by the Müller model (MM) were 
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observed to be relatively insensitive to the values of NT and 
NR as long as their ratio is fixed. This confirms the asymptotic 
character of the Müller model. 

 
Fig. 3.  The effect of the number of transmit and receive antennas on the 
outage capacity, predicted by Kronecker (KM) and Müller models (MM), for 
β=NT/NR=4,  S=21 and SNR=10 dB. 

 
Fig. 4 shows the effects of increase in the number of 

scatterers, transmit- and receive antennas on the outage 
capacity for β=NT/NR=1/3 and ρ=S/NR=3. Outage capacity 
predictions by both models increase monotonously with 
increasing values of NT, NR and S. The predictions by the 
Müller model was observed to be higher than those by the 
Kronecker model for NT=1, NR=3,  S=9, and for NT=3, NR=9, 
S=27 but lower for NT=9, NR=27, S=81. For higher values of 
the channel richness, ρ=S/NR, the capacity was observed to 
improve slightly.  

 
Fig. 4.  The effects of NT, NR, and S on the outage capacity for NT/NR=1/3, 
S/NR=3, and SNR=10 dB. 

 
Irrespective of the value of β=NT/NR, an increase in NT 

leads to an improvement in the Kronecker model (see Fig. 5). 
As for the Müller model, the outage capacity becomes higher 
when NR>NT. Below a threshold value of approximately 8.1 
bits/sec/Hz, the outage capacity was observed to degrade with 
increasing values of NT until β=1 and it begins to improve 

again for β>1. Above 8.1 bits/sec/Hz threshold, the outage 
capacity degrades monotonically with increasing values of NT, 
though with increasing slopes. This can be explained by the 
fact that, when the channel richness and the receiver diversity 
are sufficiently high, transmit diversity does not provide any 
additional diversity advantage [12] and it may even cause a 
degradation in the outage capacity. In the range of capacity 
values below threshold, Müller model may underestimate the 
outage capacity compared to the Kronecker model. 

 

 
 
Fig. 5.  The effect of NT, the number of transmit antennas, on the outage 
capacity predictions by Kronecker and Müller models for NR=4, S=21, and 
SNR=10 dB. 
 

Fig. 6 shows the effects of the number of receive antennas 
on the outage capacity for β=NT/NR<1. In this case as well, 
capacity improves with NR in both methods, though the 
improvement becomes less significant for higher values of NR. 
Predictions by the Müller method are optimistic compared to 
those of the Kronecker model. 

 

 
 
Fig. 6.  The effect of NR, the number of receive antennas, on the outage 
capacity predictions by Kronecker and Müller models for β<1, NT=2, S=21, 
and SNR=10 dB.  
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Fig. 7 shows the effect of the channel richness on the 
outage capacity. The channel richness has a significant impact 
on the capacity predicted by both methods. Irrespective of the 
number of scatterers, the capacity predictions by the 
Kronecker model are lower than those by the Müller method. 
If the curves for NR=10 and S=21 are taken as reference in 
Figures 6 and 7, one may easily observe that the NR is more 
effective in improving the outage capacity than the channel 
richness for the values of the considered parameters.  
 

 
Fig. 7.  The effect of the channel richness (number of scatterers) on the outage 
capacity predicted by Kronecker and Müller models for NT=2, NR=10, and 
SNR=10 dB. 

IV. CONCLUSION 
 

MIMO systems are used to improve the performance of 
wireless telecommunication systems. However, one needs an 
accurate model of the MIMO channel for this purpose. This 
paper presents a comparative study of the outage capacity 
predictions by the Müller and the Kronecker models. 

The Kronecker model applies to a flat fading channel, and 
separates fading correlations at transmit and receive antenna 
arrays and in the channel. Since this model considers only the 
rays scattered from both transmit and receive scatterers, it may 
be more appropriate for radio propagation in urban areas. 
However, it may lead to pessimistic predictions in suburban 
channels, where direct- and/or singly-scattered rays may also 
reach the receiver. Some measurement results are reported to 
show that this model fails under certain circumstances. 

The Müller model is simpler, valid for a frequency-selective 
fading MIMO channel and characterized by the scattering 
richness and the numbers of transmit and receive antennas.. 
Since it considers only the singly-scattered rays, this model 
may describe a suburban channel more accurately. Noting that 
singly-scattered rays undergo less attenuation compared with 
multiple-scattering, the capacity predictions by the Müller 
model may be higher compared with the Kronecker model. It 
may even overestimate the capacity in urban channels where 
rays undergo mostly multiple-scattering. In this model, the 
scattering richness plays an important role, which is usually 

ignored in other models. 
Additional parameters needed for characterizing the 

Kronecker model are assumed fixed for comparison purposes. 
The two models are then compared as a function of the 
number of scatterers, transmit- and receive antennas and the 
SNR per receive antenna. The capacity predictions by both 
methods were observed to improve with increasing values of 
the number of scatterers.  

An increase in the number of receive antennas leads to an 
improvement in the outage capacity predictede by both 
methods but the rate of improvement tapered with increasing 
values of the number of receive antennas. 

The Kronecker model shows a steady improvement in the 
outage capacity as the transmit array size increases, while the 
Müller model behaves differently for different values of the 
outage capacity. When the transmit array size is higher than 
the receive array size, the channel capacity, predicted by the 
Müller model, was observed to increase with the increasing 
number of transmit antennas for low capacity values, but to 
decrease for higher capacity values. When the transmit array 
size is less than the receive array size, the outage capacity was 
observed to decrease with increasing transmit array size. 

These results need to be supported by measurements in 
realistic scenarios.  
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