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■ WP2.1: Channel Modelling

■ WP2.2: Channel Simulation

■ WP2.3: Channel Sounding



Operation of Dept2 in Conducting Integrated
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Dept2 is operated like a decentralized, self-organizing, ad-hoc network:

■ Nodes, i.e. partners, cluster into “integrated activity” groups.

■ Initiatives are left to the nodes.

■ Dynamic, time-varying clustering (integrated activities) driven by
emerging critical open issues in research.



Outcome and Benefits
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■ New long-lasting integrated activities have been established.

■ Exchanges of tools, data, methods, and software packages have
enabled new research initiatives to be launched at partner institutions.

■ Dissemination of competence and expertise within the NoE.

■ Significantly increased research mobility.

■ Significant amount of scientific publications:
∼40 publications per year
∼83% joint papers, ∼17% NEWCOM inspired papers
∼20% journal papers, ∼80% conference papers
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■ Dept2, like the other departments and projects in NEWCOM, is
operated in a COST-like manner.

■ The add-on compared to COST actions is that more financing means
are available in NoEs to implement networking and integration.

◆ A high degree of integration has been achieved in Dept2.

■ The negative side is the heavy reporting load requested by the EC
compared to the actually modest financing of NoEs.

◆ NoEs only finance networking and integration, not research.

■ Effective networking and integration in a NoE require specific skills
from the “partner nodes”. Acquiring these skills has proven to be not
self-evident.

◆ Dept2 has strongly beneficiated from the cooperation spirit
developed in the past COST 273, COST 231, . . .
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Parametric Characterization and

Estimation of Dispersion of

Individual Path Components
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Multipath Propagation

The 4th COST 289 Workshop, April 11-12, 2007, Gothenburg, Sweden 13 / 104

Tx
Moving Scatterer

Path 1

Pa
th

D

Nominal Direction of Departure

Nominal Direction of Arrival

Rx
Scatterer

Scatterer

Spread in Direction of Departure Spread in Direction of Arrival

Specular path

Dispersive path

■ Dispersion dimensions: delay, direction of departure, direction of
arrival, Doppler frequency and polarization.

■ Path component: the contribution of a wave propagating along a
propagation path in the response of the channel.

■ Parameters of a path component: center of gravity and spread in each
dispersion dimension and dependencies across the dispersion dimensions.



Radio Channel Estimation Based on a Specular
Path Model
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Dispersion of Individual Path Components
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.

−180 −90 0 90 180
−180

−90

0

90

180

1

2

3

4

5

6
x 10

−8Delay 255 ns

A
oD

[◦
]

AoA [◦]

M
ag

n
it
u
d
e

[l
in

ea
r]

100 255 300 400 500 600 700 800
−120

−110

−100

−90

−80

Delay [ns]

P
ow

er
[d

B
]



Dispersion of Individual Path Components

The 4th COST 289 Workshop, April 11-12, 2007, Gothenburg, Sweden 32 / 104

Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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Bartlett spectra with respect to azimuth of departure (AoD) and azimuth
of arrival (AoA) computed at a specific delay from measurement data

■ 5.25 GHz carrier frequency and 200 MHz bandwidth

■ The Rx and Tx are equipped with similar 9-element circular arrays.
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■ Beamformers, such as Bartlett and Capon beamformers.

■ Dispersion estimates computed from “clustering” specular path
estimates.

Numerical example: Pdf of the maximum-likelihood estimate of the
azimuth of arrival of a specular path:
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Theory
MLSimulation setting:

■ A single dispersed
path component scenario

■ Azimuth power spectrum:
uniform within [−3◦, +3◦]

■ SNR= 40 dB
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Distribution models are applied to characterize dispersion
of individual path components in

■ AoA only

◆ Uniform distribution in a confined range [Besson & Stoica, 1999]

◆ Truncated Gaussian distribution [Trump & Ottersten, 1996]

◆ Von-Mises distribution [Riberio, et al. 2005a]

■ Multiple dispersion dimensions

◆ Von-Mises and Exp. distribution (azimuth-delay) [Ribeiro, et al. 2005b]

◆ Von-Mises-Fisher distribution (biazimuth)
[Yin, Fleury & Pedersen, et al. 2006a]

◆ Extended von-Mises-Fisher distribution (biazimuth-delay) [—, 2006b]

◆ Fisher-Bingham-5 distribution (elevation-azimuth) [—, 2007a]
[—, 2007b]



Dispersion in Direction (Azimuth-Elevation)
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A direction is defined by a unit vector Ω with end point on a sphere S2
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Direction characterized by Ω

Ω = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]T

with φ and θ representing the azimuth and elevation of Ω respectively.
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The entropy-maximizing density function with specified

■ first moment µΩ =
∫

Ωf(Ω)dΩ

■ second moment matrix
∫

ΩΩ
Tf(Ω)dΩ

is the Fisher-Bingham 5 density function [Kent 1982]:

f(Ω) = c(κ, β) · exp
{
κγT

1Ω + β[(γT

2Ω)2 − (γT

3Ω)2]
}

,

where

■ κ: concentration parameter

■ β: ovalness parameter

■ γ1,γ2,γ3: orthonormal vectors determined by angles φ̄, θ̄, α.



Dispersion in Direction (Azimuth-Elevation)
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Plots of f(Ω):

(φ̄, θ̄, α, κ, β) =
(0◦, 45◦, 160◦, 5, 1.5)

(φ̄, θ̄, α, κ, β) =
(45◦, 70◦, 35◦, 200, 100)

replacements
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For horizontal-only propagation with azimuth of departure (AoD) φ1 and
azimuth of arrival (AoA) φ2 we define

Ω1 = [cos(φ1) sin(φ1)]
T, and Ω2 = [cos(φ2) sin(φ2)]

T.

The entropy-maximizing density function f(Ω1,Ω2) with specified

■ first moments µ
Ω1

, µ
Ω2

■ second moment matrix
∫∫

Ω1Ω
T

2f(Ω1,Ω2)dΩ1dΩ2

is the density function of the von-Mises-Fisher distribution [Mardia, 1975]

f(Ω1,Ω2) = C · exp{aT
1 Ω1 + aT

2 Ω2 + Ω
T
1AΩ2},

where

■ C : normalization constant

■ a1, a2 and A : free parameters.
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The biazimuth density function f(φ1, φ2) induced by f(Ω1,Ω2) via the
mapping (φ1, φ2) 7→ (Ω1,Ω2) reads

f(φ1, φ2) = c(κ1, κ2, ρ) · exp
{(κ1 − ρ

√
κ1κ2

1 − ρ2

)
cos(φ1 − φ̄1)

+
(κ2 − ρ

√
κ1κ2

1 − ρ2

)
cos(φ2 − φ̄2) +

ρ
√

κ1κ2

1 − ρ2
cos[(φ1 − φ̄1) − (φ2 − φ̄2)]

}
.

Contour plots of f(φ1, φ2):

0 50 100 150
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φ
2

[◦
]

φ
2

[◦
]

(φ̄1, φ̄2, κ1, κ2, ρ)(φ̄1, φ̄2, κ1, κ2, ρ)
= (90◦, 90◦, 30, 40, 0.5) = (90◦, 90◦, 2, 2,−0.5)
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Let τ be the delay variable and define

ψ = [ΩT

1 ,ΩT

2 , τ ]T

The entropy-maximizing density function f(ψ) with specified

■ first moment vector µψ
■ second moment matrix

∫
ψψTf(ψ)dψ

reads [Mardia, 1975]

f(ψ) = C · exp{bTψ +ψTBψ},

where

■ C : normalization constant

■ b ∈ R5×1 and B ∈ R5×5 : free parameters.
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The biazimuth-delay density function f(φ1, φ2, τ) induced by f(ψ)
via the mapping (φ1, φ2, τ) 7→ (Ω1,Ω2, τ) reads

f(φ1, φ2, τ ;θ) = C ′ · exp
{
c1 cos(φ1 − φ̄1) + c2 cos(φ2 − φ̄2)

+ (τ − τ̄)[c3 sin(φ1 − φ̄1) + c4 sin(φ2 − φ̄2)]

+ c5(τ − τ̄)2 + c6 cos[(φ1 − φ̄1) − (φ2 − φ̄2)]
}

with

■ θ : parameter vector θ = [ φ̄1, φ̄2, τ̄
︸ ︷︷ ︸

center of

gravity

, κ1, κ2, στ
︸ ︷︷ ︸

spreads

, ρ12, ρ1, ρ2
︸ ︷︷ ︸

dependen-

cies

]

■ C ′ : normalization constant

■ c1, . . . , c6: functions of κ1, κ2, στ , ρ12, ρ1, ρ2.
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3 dB-spread surface
{
(φ1, φ2, τ) : f(φ1, φ2, τ) = 1

2
f(φ̄1, φ̄2, τ̄)

}
:

0

τ̄ [ns] φ̄1 [◦] φ̄2 [◦] στ [ns] κ1 σφ1
[◦] κ2 σφ2

[◦] ρ12 ρ1 ρ2

(a) 5 −40 0 1 5 25.6 10 18.1 −0.4 −0.3 −0.3
(b) 8 0 −100 0.5 50 8.1 30 10.5 −0.5 0.6 −0.2
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In the scenario where dispersion of the propagation channel in
AoA, AoD and Delay is considered,

Y (t) =

∫ +π

−π

∫ +π

−π

∫ +∞

−∞

c2(φ2)c1(φ1)
Ts(t − τ)h(t;φ1, φ2, τ)dφ1dφ2dτ

+ W (t),

where

■ Y (t) ∈ CM2: output signals of the Rx array

■ ci(φ) ∈ CMi, i = 1, 2: antenna array responses

■ s(t) ∈ C
M1: complex envelope of the transmitted signal

■ h(t;φ1, φ2, τ) ∈ C: (time-variant) biazimuth-delay spread
function of the propagation channel

■ W (t) ∈ CM2: complex temporally and spatially white Gaussian noise.
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Scenario with D path components:

h(t;φ1, φ2, τ) =
D∑

d=1

hd(t;φ1, φ2, τ).

Under the uncorrelated scattering assumption, the biazimuth-delay
power spectrum is of the form

P (φ1, φ2, τ) = E
[
|h(t;φ1, φ2, τ)|2

]

=
D∑

d=1

Pd(φ1, φ2, τ).
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Power spectrum Pd(φ1, φ2, τ) of the dth path component:

Pd(φ1, φ2, τ) = E
[
|hd(t;φ1, φ2, τ)|2

]

= Pd · fd(φ1, φ2, τ),

with average power

Pd =

∫ +π

−π

∫ +π

−π

∫ +∞

−∞

Pd(φ1, φ2, τ)dφ1dφ2dτ

and

fd(φ1, φ2, τ) =
1

Pd

· Pd(φ1, φ2, τ).
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We assume that

fd(φ1, φ2, τ) = f(φ1, φ2, τ ;θd),

where f(φ1, φ2, τ ;θd) is the derived biazimuth-delay density function
with the parameter vector

θd = [φ̄1,d, φ̄2,d, τ̄d, κ1,d, κ2,d, στd
, ρ1,d, ρ2,d, ρ12,d].

Parameter vector for the D-path-component scenario:

Θ = [Pd,θd; d = 1, . . . , D].

The SAGE algorithm can be applied to obtain an approximation
of the maximum likelihood estimate (Θ̂)ML.
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Measurement set-up:

■ Channel sounder: Elektrobit channel sounder – Propsound

■ Carrier frequency: 5.2 GHz

■ Bandwidth: 200 MHz

■ 50 measurement cycles (about 4 seconds)

■ Tx array height: 1.53 m; Rx array height: 0.82 m

■ Office environment

■ People walking (time-variant scenario)
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Measurement set-up:

■ A single Rx antenna, 50-element Tx array:

■ Surroundings of the Tx (Left) and the Rx (Right)
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Bartlett(·): Bartlett spectrum of the matrix given as an argument.
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Delay 160 ns
Power delay profile Bartlett(Σ̂)
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Measurement set-up:

■ Channel sounder: Elektrobit channel sounder – Propsound

■ Carrier frequency: 5.2 GHz

■ Bandwidth: 200 MHz

■ 900 measurement cycles (60 s)

■ Big hall and time-variant scenario

■ Tx array height: 1.53 m; Rx array height: 0.82 m
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Measurement set-up:

■ 9-element circular Tx and Rx arrays:

■ Surroundings of the Tx (Left) and the Rx (Right)
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Estimated 3 dB-spread surfaces of individual path components:

replacements
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The power estimates P̂d are
coded using the color bar.
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Dispersion dependence of individual path components across multiple
dimensions:
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Summaries and Conclusions
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■ We applied the principle of constrained entropy maximization to derive
probability density functions and use them to characterize the shape
of the dispersion power spectrum of individual path components.

■ Estimators of the parameters characterizing the dispersion power
spectrum were derived.

■ Experimental investigations showed that the proposed
characterization methods are applicable in real situations.

■ Experimental results demonstrated that the path components are
noticeably more concentrated compared to their corresponding
footprints in the Bartlett spectrum.

■ Dependence across multiple dispersion dimensions is observed for
individual path components.
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Radio Channel Modelling Using

Stochastic Propagation Graphs
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The specular-to-diffuse transition was noticed by Suzuki (1977) and by
Pamp&Kunisch (2002).

Spatially averaged
power delay profiles
obtained from a
line-of-sight scenario
(left) and a
non-line-of-sight
scenario (right)
[Pamp&Kunish2002].

■ Not much attention has been paid to this transition effect.

■ “Specular” and “diffuse” components are modelled as separate effects.



Motivation: Exponential Power Decay
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■ Conventional models implement an exponentially decaying
power-delay-profile motivated by measurement results.

■ This is usually done by including various ad-hoc constraints on the
random parameters of the model.

■ These approaches do not reflect the underlying physical mechanisms
that lead to this exponential decay.

■ J. B. Andersen (2006) proposed a model inspired from room
acoustical models. It predicts an exponential power decay.



Philosophy, Goals, and Method
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Philosophy:

■ Model the environment instead of the response of the environment

Goals:

■ The obtained response should exhibit an exponential power decay.

■ A joint description of specular and diffuse signal components.

Method:

■ Model the propagation environment

■ Model the propagation mechanisms

■ Compute the response



Model of the Propagation Environment (1)

The 4th COST 289 Workshop, April 11-12, 2007, Gothenburg, Sweden 89 / 104

An atypical propagation environment:
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■ We model scatterers as the vertices of a signal flow-graph.
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An atypical propagation environment:

b

S3

b

S4

b

S1

b

S6

b

Tx

bRx

(The propagation environment is static.)

■ We model scatterers as the vertices of a signal flow-graph.

■ The wave propagation between scatterers is modelled by the edges of
the graph.



Model of the Propagation Environment (2)
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A propagation graph is a “simple” directed graph G = (V, E):

b

Tx1
bRx1

bRx2

b

S1

bS2

b
S3

b

S4

b
S5

b

S6

bS7

The transmitters (Tx), receivers (Rx), and scatterers (S) are represented
by vertices in the vertex set V = {Tx1,Rx1,Rx2, S1, S2, . . . }.

Wave propagation between the vertices is modelled by edges in the edge
set E .
Wave propagation from v ∈ V to v′ ∈ V is possible iff (v, v′) ∈ E .

The position of vertex v is given by rv ∈ R3.



Model of the Propagation Mechanisms
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■ The sum of signals impinging via the incoming edges of a scatterer
are re-emitted via the outgoing edges

■ A signal emitted from the initial vertex of an edge is received in a
delayed and attenuated version at the terminal vertex of the edge.
Transfer function of edge e = (v, v′):

Ae(f) = ge · exp(j2πτef),

τe =
|rv − rv′|

c
, |ge|2 =

(
g

1 − |rv − rv′|

)2

· 1
outdegree(v)

,

where

◆ |g| < 1 is a constant gain,

◆ outdegree(v) is the out-degree of vertex v, and

◆ c is the speed of light in vacuum.



Response of a Propagation Graph (1)
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Relation between the input signal vector X(f) and the output signal
vector Y(f) in the Fourier domain:

Y(f) = H(f)X(f)

In the following we derive an expression for the transfer matrix H(f).

(Four slides of math will follow. Sorry!)



Response of a Propagation Graph (2)
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Define the state vector:

C(f) =





X(f)
Y(f)
Z(f)





where Z(f) is the vector of signals observed at the scatterers.

Decompose C(f) according to the number of edges k the signals have
traversed:

C(f) =
∞∑

k=0

Ck(f) =





Xk(f)
Yk(f)
Zk(f)







Response of a Propagation Graph (3)
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We have the following recursive equation

C0(f) = [X(f)t,0t,0t]t

Ck+1(f) = A(f)Ck(f), k ≥ 0

where A(f) is the weighted adjacency matrix of the graph:

[A(f)]nn′ =

{

A(vn,v
n′ )(f), (vn, vn′) ∈ E

0, otherwise

By appropriate vertex indexing:

A(f) =





0 0 0

D(f) 0 R(f)
T(f) 0 B(f)





D(f) : transmitters → receivers
R(f) : scatterers → receivers
T(f) : transmitters → scatterers
B(f) : scatterers → scatterers.



Response of a Propagation Graph (4)
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Obviously
Y1(f) = D(f)X(f).

By inspection of the series A
2(f),A3(f), . . . we see

A
k(f) =





0 0 0

R(f)Bk−2(f)T(f) 0 R(f)Bk−1(f)
B

k−1(f)T(f) 0 B
k(f)



 , k ≥ 2.

Thus
Yk(f) = R(f)Bk−2(f)T(f)X(f), k ≥ 2.



Response of a Propagation Graph (5)
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Summing up signal contributions we obtain:

Y(f) = D(f)X(f) +
∞∑

k=2

R(f)Bk−2(f)T(f)X(f)

=

[

D(f) +
∞∑

k′=0

R(f)Bk′

(f)T(f)

]

X(f)

=
[
D(f) + R(f)(I − B(f))−1

T(f)
]

︸ ︷︷ ︸

H(f)

X(f).

A detailed derivation is given in [Pedersen & Fleury 2007].



How to Generate a Propagation Graph
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A propagation graph can be obtained in different ways:

■ From a deterministic environment (e.g. by ray-tracing).

■ Generate a random environment (scatter locations and weights) and
calculate visibilities.

■ By randomly generating the vertices and the edges of the graph.

We focus on the third option.



Simulation Study (1)
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Simulation scenario:

1. A constant number N of scatterers is assumed.

2. The positions of the N scatterers S1, . . . , SN are drawn according to
a uniform distribution defined on a region R ⊂ R

3.

3. The region R is assumed to be a rectangular solid box.

4. The transmitters and receivers have fixed coordinates.

5. Edge probability: Pr((v, v′) ∈ E) =







Pdir if (v, v′) = (Tx,Rx)

0 if v = v′

0 if v = Rx

0 if v′ = Tx

Pvis otherwise



Simulation Study (2)
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Simulation settings:

■ R = [0, 5] × [0, 10] × [0, 3.5] m3

■ M1 = M2 = 1

■ Transmit antenna position: [1.8, 2.0, 0.5]T m

■ Receiver antenna position, [1.0, 4.0, 1.0]T m

■ N = 10 scatterers placed according to a Bernoulli point process on R
■ g = 0.8

■ Pvis = 0.8



Simulation Study (3)
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Scenario: Pdir = 1 (line-of-sight). Signal bandwidth: 2 GHz to 10 GHz
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Simulation Study (4)
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Pdir = 1 (solid) Pdir = 0 (dashed), signal bandwidth: 2 GHz to 3 GHz
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Simulation Study (5)
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Pdir = 1 (solid) Pdir = 0 (dashed), signal bandwidth: 2 GHz to 3 GHz

Estimated delay power spectrum (obtained from 100 realisations):
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Concluding Remarks

The 4th COST 289 Workshop, April 11-12, 2007, Gothenburg, Sweden 103 / 104

■ The structure of the propagation graph yields an exponentially decaying
power-delay profile.

■ The channel realisations of the channel impulse response obtained with the
model exhibit a transition from specular contributions for low delays to a
diffuse part at long delays as observed in measurements.

■ The propagation graph model can be easily extended to include dispersion
in directions of departure and arrival.

■ The model has been described in [Pedersen & Fleury 2006] and [Pedersen
& Fleury 2007]
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