Optimal Power Loading for Orthogonal Multiuser Relaying

S. Berger A.Wittneben

Communications Technology Laboratory
Swiss Federal Institute of Technology (ETH) Zurich

COST 289 - 10th MCM in Novi Sad
Outline

System Model

Multiuser Stream Orthogonalization
 Joint Signal Processing at Sources and Destinations
 Separate Signal Processing at Sources and Destinations

Simulation Results

Conclusions
Outline

System Model

Multiuser Stream Orthogonalization
 Joint Signal Processing at Sources and Destinations
 Separate Signal Processing at Sources and Destinations

Simulation Results

Conclusions
\(N_{SD} \) source/destination pairs

\(N_{R} \) antennas of a linear distributed antenna system (LDAS) acting as perfectly phase synchronous *amplify-and-forward* relays → joint signal processing of all received data

\(S_i \) shall transmit to \(D_i \) such that it causes no interference at the other destinations

Complete channel state information (CSI) at all relays

Local compound channel state information at the destinations
System Model

N_{SD} sources \rightarrow N_R relay nodes \rightarrow N_{SD} destinations

$\mathbf{s}; P_S \rightarrow \mathbf{H}_{SR}$ \rightarrow $+\rightarrow \mathbf{G}$$\rightarrow \mathbf{H}_{RD}$$\rightarrow \mathbf{d}$

- No channel knowledge at the sources: entries of \mathbf{s} are i.i.d. complex normal
- $\mathbf{n}_R \sim \mathcal{C}\mathcal{N}(\mathbf{0}, \sigma_{n_R}^2 \mathbf{I}_{N_R})$ and $\mathbf{n}_D \sim \mathcal{C}\mathcal{N}(\mathbf{0}, \sigma_{n_D}^2 \mathbf{I}_{N_{SD}})$ comprise AWGN contributions at relays and destinations, respectively
- **Sum Power Constraint**: No power loading at sources, sum power constraint at relays:

\[
P_R = \mathbb{E}_{\{\mathbf{s}, \mathbf{n}_R\}} [\mathbf{r}^H \mathbf{r}] = \mathbb{E}_{\{\mathbf{s}\}} [\mathbf{s}^H \mathbf{s}] = P_S
\]
Scenario description:

Linear Distributed Antenna System (LDAS) acting as multi-antenna relaying terminal:

- Relays are connected via backbone
- Global signal knowledge: *Joint processing* of the signal at all relays
- Arbitrary gain matrix G
- Global channel knowledge
- Global phase reference

Distinguish two grades of cooperation among sources and destination:

1. *Joint signal processing* at sources and destinations (multi-antenna terminals)
2. *Individual signal processing* at sources and destinations (autonomous single-antenna terminals)
Outline

System Model

Multiuser Stream Orthogonalization
 Joint Signal Processing at Sources and Destinations
 Separate Signal Processing at Sources and Destinations

Simulation Results

Conclusions
Joint Signal Processing at Sources and Destinations

System model

- Equivalent channel matrix

\[\mathbf{H}_{SD} = \mathbf{H}_{RD} \mathbf{G} \mathbf{H}_{SR} \]

with singular value decomposition

\[\mathbf{H}_{SR} = \mathbf{U}_{SR} \mathbf{\Sigma}_{SR} \mathbf{V}_{SR}^H \quad \text{and} \quad \mathbf{H}_{RD} = \mathbf{U}_{RD} \mathbf{\Sigma}_{RD} \mathbf{V}_{RD}^H \]

- Relays orthogonalize the \(N_{SD} \) subchannels when choosing

\[\mathbf{P}_S = \mathbf{V}_{SR}, \quad \text{and} \quad \mathbf{G} = \mathbf{V}_{RD} \mathbf{D} \mathbf{U}_{SR}^H, \quad \mathbf{P}_D = \mathbf{U}_{RD}^H. \]
Multiuser Stream Orthogonalization

Joint Signal Processing at Sources and Destinations

Equivalent diagonal system model

Source Terminals

\[\begin{align*}
\mathbf{s} & \quad \mathbf{U}^H_{\text{SR}} \\
\mathbf{\Sigma}_{\text{SR}} & \quad \mathbf{D} \\
\mathbf{\Sigma}_{\text{RD}} & \quad \mathbf{d}
\end{align*} \]

Uplink
Relays (LDAS)
Downlink
Destination Terminals

▷ Equivalent channel matrix

\[\mathbf{H}_{SD} = \mathbf{H}_{RD} \mathbf{G} \mathbf{H}_{SR} \]

with singular value decomposition

\[\begin{align*}
\mathbf{H}_{SR} & = \mathbf{U}_{SR} \mathbf{\Sigma}_{SR} \mathbf{V}^H_{SR} \\
\mathbf{H}_{RD} & = \mathbf{U}_{RD} \mathbf{\Sigma}_{RD} \mathbf{V}^H_{RD}
\end{align*} \]

▷ Relays orthogonalize the \(N_{SD} \) subchannels when choosing

\[\begin{align*}
\mathbf{P}_S & = \mathbf{V}_{SR}, \\
\mathbf{G} & = \mathbf{V}_{RD} \mathbf{D} \mathbf{U}^H_{SR}, \\
\mathbf{P}_D & = \mathbf{U}^H_{RD}.
\end{align*} \]
- **MIMO capacity:**

\[I_{\text{LDAS, joint}} = \frac{1}{2} \log_2 \det \left(I_{N_R} + \frac{P_S}{N_{SD}} R_n^{-1} H_{SD} H_{SD}^H \right) \]

- **Sum power constraint:**

\[\mathbb{E}_{\{s,n_R\}} [r_r^H r_r] = \text{tr} \left(\sigma_s^2 G H_{SR} H_{SR}^H G^H + \sigma_{n_R}^2 G G^H \right) \overset{!}{=} P_S \]

- **Convex Optimization Problem [05: Muñoz et al.]**

Minimize

\[- \frac{1}{2} \log_2 \det \left(I_{N_R} + \frac{P_S}{N_{SD}} R_n^{-1} D D^H \right) \]

subject to

\[- |d_k|^2 \leq 0, \quad k \in \{1, \ldots, N_{SD}\} \]

and

\[\sum_{k=1}^{N_{SD}} \left(\frac{P_S}{N_{SD}} \lambda_{SR}^{(k)} + \sigma_{n_R}^2 \right) |d_k|^2 - P_S = 0. \]

\[\rightarrow \text{Waterfilling solution} \]
Separate Signal Processing at Sources and Destinations

System model

- Equivalent channel matrix
 \[H_{SD} = H_{RD} G H_{SR} \]

- Relays orthogonalize the \(N_{SD} \) subchannels when choosing
 \[G = H_{RD}^\dagger D H_{SR}^\dagger, \]

where

\[H_{SR}^\dagger = \left(H_{SR}^H H_{SR} \right)^{-1} H_{SR}^H \quad \text{and} \quad H_{RD}^\dagger = H_{RD}^H \left(H_{RD} H_{RD}^H \right)^{-1}. \]
Separate Signal Processing at Sources and Destinations

Equivalent diagonal system model

- **Equivalent channel matrix**

\[H_{SD} = H_{RD} G H_{SR} \]

- Relays orthogonalize the \(N_{SD} \) subchannels when choosing

\[G = H_{RD}^{\dagger} D H_{SR}^{\dagger}, \]

where

\[H_{SR}^{\dagger} = (H_{SR}^{H} H_{SR})^{-1} H_{SR}^{H} \quad \text{and} \quad H_{RD}^{\dagger} = H_{RD}^{H} (H_{RD}^{H} H_{RD})^{-1}. \]
MIMO capacity:

\[I_{\text{LDAS},\text{sep}} = \frac{1}{2} \log_2 \det \left(I_{\text{NR}} + \frac{P_S}{N_{\text{SD}}} (R_n \odot I_{N_{\text{SD}}})^{-1} H_{\text{SD}}H_{\text{SD}}^H \right) \]

Sum power constraint:

\[E_{\{s,n_R\}} [r^H r] = \text{tr} \left(\sigma_s^2 G H_{\text{SR}} H_{\text{SR}}^H G^H + \sigma_{n_R}^2 G G^H \right) \overset{!}{=} P_S \]

No Convex Optimization Problem

\[
\begin{align*}
\text{Minimize} & \quad - \frac{1}{2} \log_2 \det \left(I_{\text{NR}} + \frac{P_S}{N_{\text{SD}}} (R_n \odot I_{N_{\text{SD}}})^{-1} H_{\text{SD}}H_{\text{SD}}^H \right) \\
\text{subject to} & \quad - |d_k|^2 \leq 0, \quad k \in \{1, \ldots, N_{\text{SD}}\} \\
\text{and} & \quad \sigma_s^2 \sum_{k=1}^{N_{\text{SD}}} b_{kk} |d_k|^2 + \sigma_{n_R}^2 \sum_{i=1}^{N_{\text{SD}}} \sum_{j=1}^{N_{\text{SD}}} b_{ji} a_{ij} d_j^* d_i - P_S = 0.
\end{align*}
\]
Multiuser Stream Orthogonalization
Separate Signal Processing at Sources and Destinations

- **MIMO capacity:**

\[
I_{\text{LDAS,sep}} = \frac{1}{2} \log_2 \det \left(I_{N_R} + \frac{P_S}{N_{SD}} \left(R_n \odot I_{N_{SD}} \right)^{-1} H_{SD} H_{SD}^H \right)
\]

- **Sum power constraint:**

\[
E_{\{s, n_R\}} [r^H r] = \text{tr} \left(\sigma_s^2 G H_{SR} H_{SR}^H G^H + \sigma_n^2 G G^H \right) = P_S
\]

- **For high SNR assumption:** *Convex Optimization* Problem

\[
\text{Minimize} \quad - \frac{1}{2} \log_2 \det \left(I_{N_R} + \frac{P_S}{N_{SD}} \left(R_n \odot I_{N_{SD}} \right)^{-1} H_{SD} H_{SD}^H \right)
\]

subject to

\[
- |d_k|^2 \leq 0, \quad k \in \{1, \ldots, N_{SD}\}
\]

and

\[
\sigma_s^2 \sum_{k=1}^{N_{SD}} b_{kk} |d_k|^2 + \sigma_n^2 \sum_{k=1}^{N_{SD}} b_{kk} a_{kk} |d_k|^2 - P_S = 0.
\]

→ *Waterfilling solution*
Outline

System Model

Multiuser Stream Orthogonalization
 Joint Signal Processing at Sources and Destinations
 Separate Signal Processing at Sources and Destinations

Simulation Results

Conclusions
Channels: Frequency flat block fading model

1. *Symmetric* channel conditions: i.i.d. Rayleigh fading with unit variance $\sigma^2_{h} = 1$
2. *Asymmetric* channel conditions: i.i.d. Rayleigh fading with
 - Link 1: variance $\sigma^2_{h} = 1$
 - Other links: variance $\sigma^2_{h} = 0.1$

Noise: AWGN at the relays $n_R \sim CN(0, \sigma^2_n I_{NR})$ and at the destinations $n_D \sim CN(0, \sigma^2_n I_{NR})$

Transmit power σ^2_s for each source S_k is calculated such that it would result in a specific SNR for a $1 \times 1 \times 1$ reference scenario
Average sum rate

Joint ('joint') / separate ('sep') signal processing at sources/destinations
Simulation Results

cdf of instantaneous rate for link 1

Joint ('joint') / separate ('sep') signal processing at sources/destinations

![Graph showing cdf of instantaneous rate for link 1.](image)
Average sum rate

Identical ('id') / optimal ('opt') subchannel weighting

Simulation Results

Average sum rate in bits/s/Hz for different subchannel weights and SNR values.

- $N_{SD} = 4$, optimal ('opt')
- $N_{SD} = 4$, identical ('id')
- $N_{SD} = 2$, optimal ('opt')
- $N_{SD} = 2$, identical ('id')
- $N_{SD} = 1$, optimal ('opt')
- $N_{SD} = 1$, identical ('id')

SNR [dB] vs. Average Sum Rate [bits/s/Hz]
Outline

System Model

Multiuser Stream Orthogonalization
 Joint Signal Processing at Sources and Destinations
 Separate Signal Processing at Sources and Destinations

Simulation Results

Conclusions
Conclusions

- **Distributed relay network** with *linear distributed antenna system* acting as relaying architecture
- Global channel knowledge at the relays
- Distinguish between *joint* and *separate* signal processing at sources/destinations
- **Waterfilling** at the relays:
 - Diagonal system model
 - Derivation of the optimal subchannel weighting factors
- **Average sum rate** (uncoded) as figure of merit
 - Schemes exhibit virtually the same average sum rate (uncoded)
 - Equal (uncoded) diversity gain
 - 'joint': Average rates for individual links differ
 - 'sep': Average rates for individual links are equal
- Substantial gain in average sum rate over identical subchannel weighting for asymmetric channel conditions