Distributed Base Station Processing in the Uplink of Cellular Networks

Emre Aktas[†], Jamie Evans[‡] and Stephen Hanly[‡]

 [†]Department of Electrical and Electronics Engineering Hacettepe University, Ankara, Turkey
 [‡] Department of Electrical and Electronic Engineering University of Melbourne, Australia

COST289 Meeting

March 23-24, 2006 - University of Novi Sad, Serbia and Montenegro

Outline

- Uplink channel of cellular network
- Global processing in the uplink
- Optimum global receiver for linear cellular array
- Belief propagation preliminaries
- Iterative global receivers for planar cellular array

Uplink Channel of Cellular Network

- Signal transmitted by a mobile in a cell received at the base station of that cell and base stations of neighbor cells

Global Receiver

- Single-cell receiver
 - each base station processes individually
 - each base station's task is to decode users' signal at its cell
- Global receiver: a conceptual receiver where
 - the entire cellular network is a single multiaccess link
 - multiple transmitters, a single receiver with multiple antennas
 - each base station acts as an antenna of the receiver
 - optimum multiuser decoding is performed

Information-Theoretic Results

- Frequency planning:
 - Different frequency bands (orthogonal signals) are assigned to nearby cells
 - Goal is to avoid inter-cell interference
- Frequency planning is based on single-cell processing
- If global receiver was available?
- Full-frequency use with global receiver is the best strategy [Wyner:1994] [Hanly and Whiting:1993], [Somekh and Shamai:2000]

Single-cell vs. Global Processing

- Conventional cellular systems employ single-cell processing:
- Each mobile assigned a base station
- Intended communication is between a mobile and its base station

- Signals from mobiles in other cells undesired, regarded as inter-cell interference (ICI)
- ICI mitigation limited to observation at single base station

Single-cell vs. Global Processing

- Global processing:
 - Have access to all received signal due to desired user: receiver diversity
 - Have access to all received signal due to interfering users: better suppression of inter-cell interference

Global Receiver – Practical Issues

- Practical challenges of implementing a global receiver
 - Collecting received signals from all base stations at a single processor
 - Complexity of multi-user detection: e.g. $\mathcal{O}(N^3)$ for LMMSE receiver, $\mathcal{O}(M^N)$ for optimal receiver with M-ary signaling

Goal

- Goal in this work: Distributed global receiver
 - Message passing among base stations allowed only between adjacent cells
 - With increasing network size, the following should remain constant
 - Complexity for each base station
 - Decoding delay number of consecutive message passings

Contribution

- Proposed distributed iterative processing methods for planar array model
 - Employed the belief propagation algorithm
 - Performance close to individually optimum maximum *a-posteriori* (MAP) receiver

Assumptions

- High bandwidth, error-free land-line communication between base stations of adjacent cells
- Intra-cell and inter-cell synchronized mobile users
- Full frequency reuse
- TDMA within a cell
- Flat fading channel, coefficients available at base station
- Uncoded system
- ICI from users in adjacent cells only

Decoding for the Linear Array Model

• Cells located on a line, most has two adjacent cells

$$Y_{k} = \sum_{i=-1}^{1} B_{k+i} H_{k}(i) + N_{k}$$

- Equivalent to ISI channel with memory 2
- Optimal distributed MAP decoding: [Grant, Hanly, Evans, Müller:2004]
- For each cell form a state by clustering the transmitted symbols from adjacent cells

$$S_k = (B_{k-1}, B_k, B_{k+1})$$

Decoding for the Linear Array Model

• The states S_1, S_2, \ldots, S_N form a hidden Markov chain

Each observation depends on 1 state only

- \Rightarrow use the BCJR [Bahl, Cocke, Jelinek, Raviv : 1974] algorithm to calculate $p(s_k|y_1, \dots, y_N)$
- Can be implemented at the each station with local processing and message passing between adjacent cells
- With increasing N:
 - complexity for each base station remains constant
 - decoding delay increases

Decoding for the Planar Array Model

- Consider rectangular array model (extension to hexagonal case straightforward)
- Most cells have 4 adjacent cells
- No natural ordering to form a Markov chain as in linear array model

Iterative Decoder

Turbo-decoder-like iterative decoding

• *A-posteriori* probability of one decoder used as prior of the next decoder

A Bayesian Network Approach

- Alternatively, construct a graphical representation -Bayesian belief network
- Apply the belief propagation algorithm on this graph

Belief Propagation Algorithm

- Belief propagation algorithm
 - Given some variables, calculates posterior distributions of other variables
 - Algorithm is defined by messages among the nodes on the graph
- In order to define a BP algorithm
 - construct a graph
 - choose message scheduling on this graph

Belief Propagation Algorithm

- BP is a good candidate for our purposes because
 - BP is distributed
 - BP is numerically efficient
- We envision a system which achieves global processing, where
 - The calculations for each node is done by the base station of a cell
 - The message passings among the nodes: Base stations communicate with adjacent base stations

Bayesian Network Preliminaries

- Directed graph: Edges from parent nodes to child nodes
- Each child node and its parent represent a conditional distribution in the factorization of the joint pdf

Message $V_2 - V_4$: function of \mathcal{V}_2

Message $V_4 - V_2$: function of \mathcal{V}_2

 $p(v_1, v_2, v_3, v_4) = p(v_3 | v_1, v_2) p(v_4 | v_1, v_2) p(v_1) p(v_2)$

Bayesian Network – Clustered Graph

- A graph where each observation has a single parent node
- Each state node is a clustered node that contains the symbols that contribute to that observation
- Inspired by the Markov chain model of the BCJR algorithm

Bayesian Network – Clustered Graph

Bayesian Network – Decomposed Graph

- Graph where each variable is represented by a separate node
- The clustered nodes are decomposed
- Reveals the structure explicitly

Numerical Results

- Rayleigh fading
- MS-to-own-BS channel: unit variance
- MS-to-other-BS channel: variance α^2
- $\alpha = 0.5$, SNR = 9 dB
- Both algorithms quickly achieve near single-user performance
- BP on decomposed graph slightly faster
- Convergence rate does not vary with network size, location of cell

Numerical Results

- 4x4 planar array
- Optimal single-cell processor also given
- ICI parameter α = 0: No
 ICI, optimal APP for single user channel
- As ICI power increases algorithms can
 - Handle the ICI
 - Exploit diversity and energy provided by ICI
- Very large gain due to message passing

Numerical Results

- Performance with respect to the location of the cell
 - $\alpha = 0.5$, SNR = 9 dB
- Performance does not vary as long as the cell is not at the edge of the network
- Loss is due to absence of diversity and energy

Conclusions

- Distributed decoding of planar cellular array
- Algorithms with local processing and message passing
- Numerically observed near optimal performance
- Methods examples of BP algorithm working in graphs with loops
- Future work:
 - Integrating the iterative method with synchronization, channel estimation, coded signals