Recent Theoretical and Experimental Results in Multiuser Zero Forcing Relaying

A. Wittneben, S. Berger, I. Hammerstroem, B. Rankov

Outline

A simplistic consideration of the capacity of wireless ad hoc networks

Zero Forcing beamforming

- co-located antennas
- multiuser ZF relaying

Performance results

- improvement of sum rate in dense wireless networks
- impact of noisy channel state information
- impact of node mobility
- A theoretical analysis of Multiuser ZF relaying with noisy channel state information
 - average SINR at destination
 - tightness of approximation
 - some implications
- Conclusions

Wireless Ad Hoc Network

• area:
$$A_0 = \pi r_0^2$$

• average path length:

$$d_{SD} = c_{SD} \cdot r_0$$

Some assumptions

- all nodes generate the same offered load
- no idle queues
- symmetric traffic pattern
- no overhead due to routing and multiple access
- no multi-access collisions
- number of nodes sufficiently large to justify the consideration of averages
- scheduling ensures minimum SINR at receiver: SINR,
 - ergodic rate per hop:

 $R_a \ge \log_2(1 + SINR_r)$ bit/channel use

Interference Model

- motivation: ensure minimum SINR at receivers
- range area:

$$A_r = \pi r^2$$

- interference area: $A_I = \pi c_I^2 r^2$
- Note: SINR is a function of c_I

- spatial reuse of same physical resource
- distributed "spatial multiplexing"
- number of simultaneous transmissions:

 $N_{\rm Sim} \thickapprox A_0 \: / \: A_{\rm I}$

Multihop Paths

- the spatial resources/packet required by a multihop link are given by the sum of the interference areas of all channel uses, which are required to deliver one symbol
- average number of hops:

$$N_h = \frac{d_{SD}}{r} = c_{SD} \frac{r_0}{r}$$

• average sum interference area:

$$A_p = N_h \cdot A_I = c_I^2 \cdot c_{SD} \cdot \pi \cdot r_0 r$$

Sum Rate of Network

• sum rate of network in delivered bit/channel use:

$$R_{sum} \approx \frac{A_0}{A_p} \cdot \log_2\left(1 + SINR_r\right)$$
$$= \frac{\log_2\left(1 + SINR_r\right)}{c_{SD}c_I^2} \cdot \frac{r_0}{r}$$

- multihop transmission favorable (small r)
- the average minimum hop length r_{min} depends on the total number of nodes N

 for a regular 2-D network we have

 thus the maximum average sum rate in bit/channel use follows as:

$$R_{sum}^{\max} \approx \frac{\log_2 \left(1 + SINR_r\right)}{c_r c_{SD} c_I^2} \cdot \sqrt{N} \sim \sqrt{N}$$

Points of View

• Network view: $R_{sum}^{\max} \sim \sqrt{N}$

- user view:
 - rate per node
 - $\sim \sqrt{N} \, / \, N = 1 / \sqrt{N}$

- number of hops (delay)

$$N_h = \frac{c_{SD} \cdot r_0}{r_{\min}} = \frac{c_{SD}}{c_r} \cdot \sqrt{N}$$

 user view: network transmit energy per delivered symbol

- γ : path loss exponent
- *E*_{SD} : reference transmit energy, which is required for 1hop link from source to destination:

Can we trade off delay and network transmit energy?

Outline

- A simplistic consideration of the capacity of wireless ad hoc networks
- Zero Forcing beamforming
 - co-located antennas
 - multiuser ZF relaying
- Performance results
 - improvement of sum rate in dense wireless networks
 - impact of noisy channel state information
 - impact of node mobility
- A theoretical analysis of Multiuser ZF relaying with noisy channel state information
 - average SINR at destination
 - tightness of approximation
 - some implications
- Conclusions

Zero Forcing Beamforming with Co-Located Antennas

• Zero Forcing beamforming:

 $G_{ZF}^{H} \cdot H_{SA} = I$

- requires cooperation between the antennas (non-diagonal gain matrix $G_{\rm ZF}$)
- requires at least N_a antennas, if the mobile nodes have one antenna

Multiuser Relaying in Ad Hoc Networks

Goal: distributed beamforming in infrastructureless ad hoc network

- N_r linear amplify&forward relays
- no cooperation between relays
- N_a source/destination pairs
- all source/destination links use same physical channel
- two-hop relay traffic pattern:

System Model

- global phase reference at relays (coherent relaying)
- no power loading across sources
- P_s=P_r
- total power constraint: P_r=1
- link power constraint: P_r=N_a
- <u>diagonal</u> gain matrix D_r (compare to beamforming)
- received signal:

$$\vec{d} = H_{rD} \cdot D_r^H \cdot H_{Sr} \cdot \vec{s} + H_{rD} \cdot D_r \cdot \vec{m} + \vec{w} \equiv H_{SD} \cdot \vec{s} + \vec{n}$$

Multiuser Zero Forcing Relaying

 for N_a source/destination pairs at least

 $N_r = N_a \cdot (N_a - 1) + 1$

relays are required (*minimum relay configuration*)

• beamforming: N_a

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$H_{SD} = H_{rD} \cdot D_r^H \cdot H_{Sr}$$

gain vector: $\vec{d}_r = diag(D_r)$

$$H_{SD}[p,q] = \sum_{k=1}^{N_r} H_{rD}[p,k] \cdot \vec{d}_r^*[k] \cdot H_{Sr}[k,q]$$

$$H_{SD}[p,q] = \vec{d}_r^H \cdot (\vec{h}_{rD}^{(p)} \odot \vec{h}_{Sr}^{(q)})$$

ZF:
$$H_{SD}[p,q] = 0 \quad \forall p \neq q$$

set of $N_a \cdot (N_a - 1)$ linear equ.

Excess Relay Case

compound interference matrix

$$A_{ZF} \equiv \begin{bmatrix} \left(\vec{h}_{rD}^{(p)} \odot \vec{h}_{Sr}^{(q)} \right)^T \\ \bullet \\ \bullet \end{bmatrix} \quad \forall \ p \neq q$$

- any ZF gain vector \vec{d}_{ZF} lies in the nullspace N_{ZF} of A_{ZF} , i.e. $\vec{d}_{ZF} = N_{ZF} \cdot \vec{y}_{ZF}$
- for the minimum relay configuration the matrix N_{ZF} is $(N_r \times 1)$, i.e. \vec{y}_{ZF} is a scalar.
- if we have more relays, we can optimize \vec{y}_{ZF}

 Let *SNR*_k be the SNR of source/destination link k for a given channel realization

Optimization criteria:

 fairness and diversity: maximize the minimum rate of all source/destination link

$$\vec{y}_{ZF} = \arg\max_{\vec{y}_{ZF}} \left[\min_{k} (SNR_{k}) \right]$$

 network performance: maximize the sum rate of all source/destination links

$$\vec{y}_{ZF} = \arg\max_{\vec{y}_{ZF}} \left[\sum_{k} \log_2(1 + SNR_k) \right]$$

Optimization criterion fairness: diversity performance

CDF of destination SNR

- two source/destination pairs
- link power constraint
- i.i.d. complex normal channel coefficients
- parameter: number of relays
- green: MUZFRel
- circle: mean
- red: N_r 2 fold diversity

Optimization criterion fairness: sum rate

CDF of sum rate

- two source/destination pairs
- link power constraint
- i.i.d. complex normal channel coefficients
- parameter: number of relays
- Note: array gain

Outline

- A simplistic consideration of the capacity of wireless ad hoc networks
- Zero Forcing beamforming
 - co-located antennas
 - multiuser ZF relaying
- Performance results
 - improvement of sum rate in dense wireless networks
 - impact of noisy channel state information
 - impact of node mobility
- A theoretical analysis of Multiuser ZF relaying with noisy channel state information
 - average SINR at destination
 - tightness of approximation
 - some implications
- Conclusions

Maximum Average Sum Rate

- total power constraint
- i.i.d. complex normal channel coefficient
- \bullet N_{Node} nodes in the network
- out of them N_{a,opt} sources/destinations

substantial improvement of average sum rate under total power constraint

Average Sum Rate of Minimum Relay Configuration

- link power constraint
- number of nodes in the network (minimum relay configuration):

$$N_{Node} = N_a^2 + N_a + 1$$

• approximation of average sum rate:

under link power constraint the sum rate is essentially proportional to $\sqrt{N_{\rm Node}}$

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Impact of Noisy CSI on Minimum Relay Configuration

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Impact of Node Mobility on the estimator signal to noise ratio SNR_{est}

- equispaced pilot symbols
- Jakes doppler spectrum; f_D=20Hz
- f_s=1Mbaud symbol rate
- MMSE prediction of channel coefficients based on 10 most recent observations
- prediction error reduces estimator SNR
- Note: the estimation error due to node mobility is not inversely proportional to the SNR

Net Sum Rate under Node Mobility

- *measurement* of the local channel coefficients at each relay: one channel per source and per dest.: 2N_a
- *dissemination* of the local CSI to all other relays requires 2N_a channel uses per relay: 2N_aN_r
- case a: only measurement overhead
- case b: measurement and dissemination overhead

• SNR=30dB

the overhead constraints the achievable spatial multiplexing gain
however still a sixfold improvement of the sum rate in this example

Summary I

- Multiuser Zero Forcing Relaying: a novel distributed beamforming scheme for wireless ad hoc networks
 - requires a global phase reference at the relays
 - requires essentially N_aN_a relays
- *Minimum relay configuration* achieves full spatial multiplexing gain but no distributed array gain
- Noisy CSI introduces equivalent SNR loss
- Even with moderate node mobility a *substantial increase in sum rate* is possible

Outline

- A simplistic consideration of the capacity of wireless ad hoc networks
- Zero Forcing beamforming
 - co-located antennas
 - multiuser ZF relaying
- Performance results
 - improvement of sum rate in dense wireless networks
 - impact of noisy channel state information
 - impact of node mobility
- A theoretical analysis of Multiuser ZF relaying with noisy channel state information
 - average SINR at destination
 - tightness of approximation
 - some implications
- Conclusions

Equivalent Channel Matrix for N_a=2

Analysis of the average destination SINR with noisy channel state info

Minimum relay configuration: $N_r = 3$ $H \equiv \begin{bmatrix} \vec{h}_{rD}^{(1)} \odot \vec{h}_{Sr}^{(2)} & \vec{h}_{rD}^{(2)} \odot \vec{h}_{Sr}^{(1)} \end{bmatrix}$

ZF relaying:

 $\vec{d} = null(H) \equiv \vec{u}$

Noisy channel state info:

$$H \rightarrow \hat{H}$$
 and $\vec{d} = null(\hat{H})$

 $\Rightarrow \vec{d}^H \cdot H \neq 0$: interlink interference

Average Interference power

- estimation error $\hat{H} = H + \Delta H$
- orthonormal basis V

 $H = V \cdot V^H \cdot H$

decomposition of estimation error

 $\Delta H = \Delta H_u + \Delta H_V$

- decomposition of gain vector $\vec{d} = \vec{d}_u + \vec{d}_V$
- the gain vector solves

 $\left(\vec{d}_{u}^{H} + \vec{d}_{V}^{H}\right) \left(H + \Delta H_{V} + \Delta H_{u}\right) = 0$ $\Rightarrow \vec{d}_{u}^{H} \cdot \left(\Delta H_{u}\right) + \vec{d}_{V}^{H} \cdot \left(H + \Delta H_{V}\right) = 0$

vector with interference coefficients

$$\vec{h}_{ISI}^{H} \equiv -\vec{d}_{V}^{H} \cdot H = -\left(\vec{d}_{u}^{H} \cdot \Delta H_{u} + \vec{d}_{V}^{H} \cdot \Delta H_{V}\right)$$

• small perturbation

$$\vec{h}_{ISI}^{H} \approx -\vec{d}_{u}^{H} \cdot \Delta H_{u}$$

and $\vec{d}_{u} \approx -\vec{u}$; thus
 $\vec{h}_{ISI} \approx -\vec{u}^{H} \cdot \Delta H_{u} = -\vec{u}^{H} \cdot \Delta H$

- noisy channel state information $\vec{\hat{h}}_{Sr}^{(q)} = \vec{h}_{Sr}^{(q)} + \vec{x}_{Sr}^{(q)}$
- the columns of $\hat{H} = H + \Delta H$ $\vec{\hat{h}}_{Sr}^{(q)} \odot \vec{\hat{h}}_{rD}^{(p)} = \left(\vec{h}_{Sr}^{(q)} + \vec{x}_{Sr}^{(q)}\right) \odot \left(\vec{h}_{rD}^{(p)} + \vec{x}_{rD}^{(p)}\right)$
- interference coefficient

$$\begin{aligned} h_{ISI}^{(p,q)} &= \tilde{H}_{SD} \big[p,q \big] \\ &\approx -\vec{u}^{H} \left(\vec{h}_{Sr}^{(q)} \odot \vec{x}_{rD}^{(p)} + \vec{x}_{Sr}^{(q)} \odot \vec{h}_{rD}^{(p)} + \vec{x}_{Sr}^{(q)} \odot \vec{x}_{rD}^{(p)} \right) \end{aligned}$$

• average interference power

$$\overline{P}_{ISI}^{(p)} \approx \sigma_s^2 \cdot \sigma_x^2 \cdot \left[2(N_a - 1)(g_r(N_a) + \sigma_x^2)\right]$$

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Average SINR

┝───≻△───≻

• Average SNR at the relay

 $SNR_u = \sigma_s^2 / \sigma_m^2$

• Average SNR at the destination with noiseless relay

 $SNR_d = \sigma_s^2 / \sigma_w^2$

SNR of the channel estimator

 $SNR_{est} = 1/\sigma_x^2$

$$\overline{SINR}^{(p)} = \frac{c^2 \cdot \overline{S}^{(p)}}{c^2 \cdot \left(\overline{\sigma}_r^{(p)2} + \overline{P}_{ISI}^{(p)}\right) + \sigma_w^2} = \frac{g_N(N_a)}{\left(SNR_u^{-1} + 2SNR_{est}^{-1} \cdot \left(N_a - 1\right)\left(1 + SNR_{est}^{-1} / g_r(N_a)\right) + SNR_d^{-1}\frac{P_s}{\overline{P}_{r,0}}\right)}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Tightness of Small Perturbation Analysis

- mimimum relay configuration
- $SNR_u = SNR_d = SNR = 20dB$

•
$$SNR_{CSI} = SNR_{est} - SNR [dB]$$

small perturbation analysis is tight for parameter space of practical interest

Optimum Power Allocation

$$\overline{SINR} = \frac{g_N(N_a)}{\left(SNR_u^{-1} \cdot \frac{1}{(2-2x)} + 2SNR_{est}^{-1} \cdot (N_a - 1)(1 + SNR_{est}^{-1} / g_r(N_a)) + SNR_d^{-1} \cdot \frac{1}{2x}\right)}$$

- network transmit power per information symbol: $P = (P_s + \overline{P}_{r,0}) = 2N_a$
- fractional relay transmit power $x \equiv \overline{P}_{r,0} / P$

Approximation for $SNR_{est} > 10$

$$\overline{SINR} \approx \frac{SNR \cdot g_N(N_a)}{2} \cdot \frac{1}{\left(1 + \left(\frac{SNR}{SNR_{est}}\right) \cdot \left(N_a - 1\right)\right)} \quad \text{with} \quad SNR_d = SNR_u \equiv SNR$$

For a large number of source/destination pairs N_a the system is operated in the low SNR regime, if SNR_{est} is finite

 \Rightarrow in contrast to perfect CSI the sum rate of the network is finite in the large system limit:

$$\lim_{N_a \to \infty} \overline{R}_{sum} = \frac{SNR_{est}}{4 \cdot \ln 2}$$

For $SNR_{est} = 30 dB$ and SNR = 20 dB this corresponds to 127 source/destination pairs with perfect CSI

SNR loss due to noisy CSI

Summary II

- Multiuser ZF relaying achieves a distributed spatial multiplexing gain with single antenna nodes
- Analysis of average SINR based on small perturbation assumption
- Numerical verification of tightness of approximation
- Noisy CSI introduces SNR-loss, which is proportional to the number of source/destination pairs
- Optimal fractional relay transmit power is independent of quality of the CSI
- In the large system limit the sum rate of the network is proportional to $\sqrt{N_{node}}$; with noisy CSI the sum rate saturates however

Comparison of Multihop and Multiuser ZF Relaying

Multihop transmission

- Network view:
 - $R_{sum}^{\max} \sim \sqrt{N}$ *
- user view:
 - number of hops (delay)

$$N_h \sim \cdot \sqrt{N}$$

 network transmit energy per delivered symbol

$$E_P \sim N^{-\frac{\gamma-1}{2}}$$

Multiuser ZF relaying

- Network view: $R_{sum}^{\max} \sim \sqrt{N}$
- user view:

$$N_h = 2$$

- network transmit energy per delivered symbol
 - $E_P = const.$

Example of trade off between delay and network transmit energy

