COST289 Spectrum and Power Efficient Broadband Communications

PROGRESS REPORT

Period: 1 July 2004 to 30 June 2005

Web site: http://cost289.ee.hacettepe.edu.tr

TC-TIST & MC Chairpersons Meeting, 28 June - 1 July 2004, Vitznau, Switzerland

Management

Chair:

 Prof. Dr. Mehmet Şafak, Hacettepe University, Ankara, Turkey

Vice-Chair:

 Prof. Dr. Hermann Rohling, Technical University of Hamburg-Harburg, Germany

Secretary:

 Researcher Serap Haşimoğlu-Ertaş, Hacettepe University, Ankara, Turkey

Signatories

- Start date: 23 April 2003
 - End date: 22 April 2007
- Signatories: 18+1
 - Belgium, Bulgaria, Czech Republic, France, Germany, Greece, Hungary, Italy, Norway, Portugal, Romania, Serbia and Montenegro, Slovak Republic, Spain, Sweden, Switzerland, Turkey, UK, Malta
- Participating Organizations: 30

Management Committee Meetings

- 1. MCM: 24 March 2003, Brussels, Belgium
- 2. MCM: 3-4 July 2003, Hamburg, Germany
- 3.MCM: 30-31 October 2003, Kosice, Slovakia
- 4. MCM: 25-16 March 2004, Zurich, Switzerland
- 5. MCM & 1st Workhop: 7-9 July 2004, Budapest, Hungary
- 6. MCM: 28-29 October 2004, Barcelona, Spain
- 7. MCM: 6-8 March 2005, Munich, Germany
- 8. MCM & 2nd Workshop: 6-8 July 2005, Antalya, Turkey

Project Groups

- Wide Area Coverage with High Mobility Access Systems for 4G
 - Centralized systems with high mobility, lower data rates and wider coverage areas
- Pervasive Wireless Access for 4G
 - Decentralized systems with low mobility, higher data rates and restricted coverage areas
- Software Defined Radio (SDR)
 - Bridges the two projects horizontally

Wide Area Coverage with High Mobility Access Systems for 4G

- Coordinator: Prof. Arne Svensson (Chalmers University of Technology)
- Participating organizations (10): Chalmers University of Technology, University of Florence, Ramonn Llull University, CEI-CETI, University Carlos III of Madrid, Hacettepe University, TU Kosice, Czech Academy of Science, Norwegian University of Science and Technology, DLR

- Intense research efforts are currently ongoing towards the definition of physical layers for 4G systems.
- For the downlink, there are several proposals based on
 - OFDM transmission techniques, and
 - the combination of OFDM and CDMA

- The typical parameters for the downlink include
 - Available downlink bandwidth is 100 MHz
 - Carrier frequency around 5 GHz
 - Maximum speed is 250 km/h
- The downlink design is simpler than the uplink design, since it is all about multiplexing within each cell.

- In the uplink, the situation is more complicated,
 - since a combination of multiplexing and multiple access takes place in each terminal when more than one service is transmitted at the same time.
- The uplink is also normally asynchronous and oscillators in different terminals are not synchronized.
- This may suggest that OFDM can not be used in the uplink due to its sensitivity to frequency synchronization errors.

- Typical uplink parameters
 - Wide area coverage (cell of similar size as 3G)
 - High mobility < 250 km/h
 - Carrier frequency around 5 GHz
 - Available uplink bandwidth 40 MHz
 - ITU requires 100 Mbps (is this possible in 40 MHz bandwidth?)
 - Multiple cell system
 - UMTS channel models

Pervasive Wireless Access for 4G

- Coordinator: Prof. Armin Wittneben, ETH Zurich
- Participating Organizations (6): ETH Zurich,
 Hacettepe University, Norwegian University of
 Science and Technology, University of Ulm,
 Budapest University of Technology and
 Economics, University Carlos III of Madrid

Pervasive Wireless Access for 4G

- Pervasive wireless access networks imply next generation WLANs that will provide ubiquitous connectivity
 - for a variety of heterogeneous nodes, e.g., RFID tags for object identification, sensors and computers,
- Data rate requirements: 1 Mbps 1 Gbps.
- We foresee high node density and low node mobility

Pervasive Wireless Access: Home Scenario

Applications of Pervasive Wireless

shopping

traffic security surveillance access control

defence surveillance

Internet

supply chain management

logistics industrial

communications instant messaging enterprise communication

health care home care

Pervasive Wireless Access for 4G

- For spectral reasons, the next generation WLANs will operate beyond 5 GHz, e.g., 17/24 GHz ISM bands.
- In the 17/24 GHz ISM bands, we face a poor scattering/rich array situation as opposed to the rich scattering/poor array situation at 5 GHz.

Pervasive Wireless Access for 4G

- Pervasive wireless access networks will exploit
 - Cooperative signalling, which has a potential to benefit from spatial multiplexing in poor scattering channels.
 - adaptive modulation and spatial multiplexing (MIMO) for scalability and spectral efficiency
 - adaptive scheduling to meet heterogeneous QoS requirements

Important Work Items within COST 289

- adaptive distributed space-time processing
- adaptive modulation in cooperative wireless networks
- adaptive scheduling in cooperative wireless networks
- cooperative multiple access
- Multihop / multinode forwarding

SDR

- Software Defined Radio (SDR) :
 - Coordinator: Prof. Sandor Imre, Budapest University of Technology and Economics
 - Participating Organizations (4): Budapest University of Technology and Economics, University Carlos III of Madrid, Ramon Llull University, Politechnical University of Catalunya

SDR

- Inter-system roaming and handover (e.g. due to traveling or multiple coverage) would require implementation of many different standards in a single radio terminal/base station.
- Reconfigurable equipment with universal hardware and downloaded software can solve the problem efficiently.
- Easier and cost-efficient system upgrades.
- Efficient design of reconfigurable radios.

SDR

- The efforts are focused in
 - the physical layer organization (DSP-type or INTELtype philosophies)
 - downloading and reconfiguration algorithms and protocols
 - Specific hardware architectures that allows, e.g.,
 - reconfiguration with a minimum power consumption penalty
 - dynamic adaptation to the variations in user traffic

1st Workshop

- The aim was to create an opportunity to discuss and to encourage cooperation for the joint research projects
- Held in Budapest during 7-9 July 2004.
- Invited speakers:
 - Prof. L. Hanzo, Southampton University
 - Dr. H. Atarashi, DoCoMo, Japan
 - Prof. A. Wittneben, ETH Zurich
 - Prof. Joan Lluis Pijoan, Ramon Llull U., Barcelona

2nd Workshop

- To be held in Antalya, Turkey, during 6-7 July 2005
- Invited speakers:
 - Prof. H. Rohling, TU Hamburg-Harburg
 - Prof. A. Wittneben, ETH Zurich
 - Prof. A. Polydoros, University of Athens
 - Prof. M. Sternad, Uppsala University, NoE WINNER

Statistics

MCM	Participants	Presentations	Tutorials
1st MCM, 24 March 2003	12		
2nd MCM, 3-4 July 2003	16	7	
3rd MCM, 30-31 Oct. 2003	25	8	
4th MCM, 15-16 March 2004	30	12	
5th MCM and 1st Workshop, 7-9 July 2004	40	20	4
6th MCM, 28-29 Oct. 2004	30	11	1
7th MCM, 7-8 March 2005	35	6	1

STSMs

Host	No. of Visitors	Project
Prof. Arne Svensson, Chalmers U. of Technology	5	Wide Area Coverage for 4G
Prof. Hermann Rohling, Technical U. Hamburg- Harburg	1	Wide Area Coverage for 4G
Dr. J. P.Romero, U. Polytechnic Catalunya	2	SDR

Cooperation

- Dr. Hiroyuki Atarashi, DoCoMo, Broadband Packet Wireless Access and its Field Experiments.
- Prof. Lajos Hanzo, University of Southampton, Recital on Multicarrier Communications: Space-Time Coded Versus Adaptive OFDM/MC-CDMA.
- Simone Morosi, University of Florence, NoE NEXWAY, Reconfigurable Antennas for Future Wireless Communications

Cooperation

- Stefan Kaiser, DLR
 Overview on MC-CDMA
- Prof. Mikael Sternad, Uppsala University, NoE WINNER
 - The WINNER beyond 3G air-interface.
- Dr. P. Fazekas, BUTE, NoE in Wireless COMmunication (NEWCOM)
 - Structure, aim and achievements.

Dissemination Plan

- Three workshops will be organised
- An e-mail network is already established
- The web site of the Action is used
 - for communication within the Action
 - to convey aims and objectives to scientific community
 - to disseminate the results and developments
 - to advertise important activities
 - for accessing the publications of the Action members